• BitMAT
  • BitMATv
  • Top Trade
  • Linea EDP
  • Itis Magazine
  • Industry 5.0
  • Sanità Digitale
  • ReStart in Green
  • Contattaci
Close Menu
LineaEDPLineaEDP
    Facebook X (Twitter) Vimeo Instagram LinkedIn RSS
    Trending
    • Dal software al pensiero predittivo: il futuro delle scommesse virtuali con l’AI
    • Gruppo MAIRE: un passo avanti verso l’innovazione con SAP
    • Wynxx: la nuova soluzione basata su GenAI di GFT Technologies
    • L’AI sovrana plasma il futuro di tutti i settori
    • Cybersecurity: le opportunità offerte dal DPCM del 30 Aprile 2025
    • Cybersecurity: le previsioni di Deloitte
    • Multi-cloud: come proteggerlo in modo adeguato?
    • SentinelOne: affrontare le sfide informatiche di oggi con Purple AI
    Facebook X (Twitter) Vimeo Instagram LinkedIn RSS
    LineaEDPLineaEDP
    • Cio
    • Cloud
    • Mercato
    • News
    • Tecnologia
    • Case History
    • Report
    • Sicurezza
    • IOT
    LineaEDPLineaEDP
    Sei qui:Home»Featured»Dati sintetici: sei domande da porsi per ottenere efficacia e affidabilità

    Dati sintetici: sei domande da porsi per ottenere efficacia e affidabilità

    By Redazione LineaEDP11/03/20254 Mins Read
    Facebook Twitter LinkedIn Reddit Telegram WhatsApp Email

    SAS individua e analizza sei quesiti importanti da considerare per ottenere benefici dai dati sintetici

    dati-sintetici

    L’uso dei dati sintetici sta rivoluzionando il panorama della gestione e dell’analisi dei dati, permettendo alle aziende di superare le limitazioni e la scarsità dei dati reali e aprire la strada a soluzioni più sicure e scalabili per la risoluzione di problemi complessi. I vantaggi del loro impiego sono numerosi, come la possibilità di addestrare e testare modelli, preservare la privacy e colmare le lacune dove i dati reali scarseggiano, generando transazioni finanziarie, cartelle cliniche o modelli di comportamento dei clienti.

    Secondo SAS, leader globale nell’ambito dei dati e nell’intelligenza artificiale, per sfruttare appieno i vantaggi dei synthetic data, è tuttavia fondamentale porsi le domande giuste, in modo da garantirne l’efficacia e l’affidabilità.

    Sei domande essenziali prima di utilizzare i dati sintetici

    1. Qual è lo scopo della generazione di dati sintetici?
      Capire il motivo per cui si vogliono generare synthetic data è essenziale per impostare il processo in modo efficace. Se, ad esempio, si sta cercando di ampliare un dataset esistente, simulare scenari rari o proteggere la privacy, ma i dati reali disponibili sono limitati, quelli sintetici possono essere utili in quanto possono addestrare modelli di machine learning. Avere un obiettivo chiaro aiuta a scegliere gli strumenti giusti e a garantire che i dati generati siano davvero utili per il contesto in cui verranno applicati.
    2. Quali metodi utilizzare per generare dati sintetici?
      Esistono diverse strategie per generare dati sintetici, ognuna con vantaggi e limitazioni. Un approccio semplice è l’applicazione di regole predefinite, basate su schemi noti, distribuzioni statistiche o insiemi di valori plausibili. Tuttavia, questo metodo può risultare poco efficace quando le relazioni tra i dati sono complesse. Per scenari più avanzati, si possono usare tecniche algoritmiche o basate sull’intelligenza artificiale. Le Generative Adversarial Networks (GAN) sono particolarmente efficaci nel creare dati realistici attraverso un sistema di competizione tra reti neurali. Il metodo SMOTE (Synthetic Minority Over-sampling Technique) è invece utile per riequilibrare dataset sbilanciati, mentre la modellazione agent-based consente di simulare dinamiche complesse. La scelta del metodo dipenderà quindi dalle specifiche esigenze del progetto.
    3. Come garantire la qualità e la validità dei dati sintetici?
      Affinché i dati sintetici siano davvero utili, devono riflettere fedelmente le caratteristiche statistiche e le correlazioni presenti nei dati reali. Questo significa analizzare e confrontare i dati generati con quelli originali, verificando la coerenza delle distribuzioni e delle relazioni tra le variabili. L’impiego di metriche statistiche e strumenti di visualizzazione aiuta a valutare la qualità dei synthetic data. Se questi risultassero poco realistici o incoerenti, potrebbero compromettere le prestazioni dei modelli di machine learning e portare a decisioni errate.
    4. Come affrontare le preoccupazioni relative alla privacy e alla sicurezza?
      Uno dei principali vantaggi dei dati sintetici è la possibilità di preservare la privacy degli utenti, ma bisogna assicurarsi che non contengano informazioni riconducibili ai dati originali. Per ridurre il rischio di re-identificazione, si possono adottare tecniche come la differential privacy, che introduce variazioni controllate nei dati per renderne impossibile il collegamento con individui reali. Inoltre, è fondamentale applicare misure di sicurezza adeguate a proteggere i synthetic data da accessi non autorizzati, garantendo così un utilizzo sicuro e conforme alle normative sulla privacy.
    5. Quali sono i potenziali bias nei dati sintetici?
      Anche i dati sintetici possono contenere bias, proprio come quelli reali, e se non vengono identificati e corretti, possono influenzare negativamente le analisi e i modelli di machine learning. È quindi importante individuare eventuali squilibri nei dati originali e adottare strategie per evitarne l’amplificazione nei dati generati. Un’analisi accurata delle distribuzioni e dei segmenti di dati aiuta a rilevare e correggere eventuali distorsioni, favorendo la creazione di modelli più equi e affidabili.
    6. Come integrare i dati sintetici con i dati reali?
      L’integrazione dei dati sintetici con quelli reali può arricchire i dataset e migliorare le prestazioni dei modelli. In alcuni casi, i dati sintetici vengono usati per espandere i dati esistenti, mentre in altri servono per testare la robustezza di un modello in condizioni diverse. Qualunque sia l’approccio scelto, è essenziale garantire che i synthetic data siano coerenti con quelli reali e non introducano anomalie.

    Il parare dell’esperto

    “Ponendoci sei domande essenziali prima di generare dati sintetici, possiamo garantire che i dati creati siano di alta qualità, preservino la privacy e servano efficacemente allo scopo previsto”, commenta Nicola Scarfone, Generative AI Team Leader di SAS.

     

    dati dati sintetici privacy SAS
    Share. Facebook Twitter LinkedIn Reddit Telegram WhatsApp Email
    Redazione LineaEDP
    • Facebook
    • X (Twitter)

    LineaEDP è parte di BitMAT Edizioni, una casa editrice che ha sede a Milano con copertura a 360° per quanto riguarda la comunicazione rivolta agli specialisti dell'lnformation & Communication Technology.

    Correlati

    Dal software al pensiero predittivo: il futuro delle scommesse virtuali con l’AI

    10/06/2025

    L’AI sovrana plasma il futuro di tutti i settori

    10/06/2025

    La GenAI nella Customer Experience: 5 miti da sfatare

    09/06/2025
    Newsletter

    Iscriviti alla Newsletter per ricevere gli aggiornamenti dai portali di BitMAT Edizioni.

    Security Words

    INFRASTRUTTURA APPLICATIVA: PROTEGGIAMOLA

    29/01/2024

    PASSWORD E STRATEGIA

    29/01/2024
    BitMATv – I video di BitMAT
    Legrand Data Center al Data Center Nation per parlare del data center del futuro!
    Snom: focus su tecnologia e partner
    Cumulabilità Transizione 5.0 e ZES: i vantaggi del Litio
    Transizione 5.0: vuoi il 45% sui software?
    Stormshield: Zero Trust pilastro della security aziendale
    Defence Tech

    Cybersecurity: le opportunità offerte dal DPCM del 30 Aprile 2025

    10/06/2025

    Multi-cloud: come proteggerlo in modo adeguato?

    10/06/2025

    SentinelOne: affrontare le sfide informatiche di oggi con Purple AI

    10/06/2025

    Strumenti legittimi e applicazioni sempre più sfruttati dal cybercrime

    06/06/2025
    Report

    Cybersecurity: le previsioni di Deloitte

    10/06/2025

    Red Hat rivela il futuro della virtualizzazione: innovazione e agilità per le aziende

    06/06/2025

    Sviluppatori entusiasti e ottimisti sull’AI agentica

    04/06/2025

    Intelligenza Artificiale: non tutte le aziende sono pronte

    30/05/2025
    Rete BitMAT
    • Bitmat
    • BitMATv
    • Top Trade
    • LineaEdp
    • ItisMagazine
    • Speciale Sicurezza
    • Industry 4.0
    • Sanità Digitale
    • Redazione
    • Contattaci
    NAVIGAZIONE
    • Cio
    • Cloud
    • Mercato
    • News
    • Tecnologia
    • Case History
    • Report
    • Sicurezza
    • IOT
    Chi Siamo
    Chi Siamo

    BitMAT Edizioni è una casa editrice che ha sede a Milano con una copertura a 360° per quanto riguarda la comunicazione online ed offline rivolta agli specialisti dell'lnformation & Communication Technology.

    Facebook X (Twitter) Instagram Vimeo LinkedIn RSS
    • Contattaci
    • Cookies Policy
    • Privacy Policy
    • Redazione
    © 2012 - 2025 BitMAT Edizioni - P.Iva 09091900960 - tutti i diritti riservati - Iscrizione al tribunale di Milano n° 293 del 28-11-2018 - Testata giornalistica iscritta al ROC

    Type above and press Enter to search. Press Esc to cancel.