• BitMAT
  • BitMATv
  • Top Trade
  • Linea EDP
  • Itis Magazine
  • Industry 5.0
  • Sanità Digitale
  • ReStart in Green
  • Speciale Sicurezza
  • Contattaci
Close Menu
LineaEDPLineaEDP
    Facebook X (Twitter) Vimeo Instagram LinkedIn RSS
    Trending
    • Stranger Things & cybersecurity: lezioni dagli anni ’80 alla realtà attuale
    • Nutanix supporta Microsoft Azure Virtual Desktop
    • NATO e Google Cloud siglano un accordo multimilionario per un cloud sovrano abilitato dall’AI
    • Attacchi cyber in crescita, normative in evoluzione: lo scenario italiano, europeo e globale
    • NIS2 e il test delle 24 ore: andare oltre la conformità per costruire un business resiliente
    • I Chief Data Officer (CDO) protagonisti della trasformazione
    • Prisma AIRS si arricchisce con Factory, Glean, IBM e ServiceNow
    • Cloudera potenzia l’accesso ai dati con l’AI
    Facebook X (Twitter) Vimeo Instagram LinkedIn RSS
    LineaEDPLineaEDP
    • Cio
    • Cloud
    • Mercato
    • News
    • Tecnologia
    • Case History
    • Report
    • Sicurezza
    • IOT
    LineaEDPLineaEDP
    Sei qui:Home»Categorie Funzionali»Posizione Home-Page»Cybersecurity: che ruolo ha il machine learning?

    Cybersecurity: che ruolo ha il machine learning?

    By Redazione LineaEDP25/03/20194 Mins Read
    Facebook Twitter LinkedIn Reddit Telegram WhatsApp Email

    Secondo una ricerca di ESET l’80% dei responsabili IT aziendali ritiene che il machine learning aiuterà la propria organizzazione a rispondere più rapidamente alle minacce sulla sicurezza

    L’apprendimento automatico (Machine Learning) non è solo un termine ormai noto e molto gettonato ma è anche una tecnologia ampiamente accettata e in cui si ripone la piena fiducia. Secondo i dati della ricerca di OnePoll condotta per conto di ESET, l’80% dei responsabili IT aziendali ritiene che il ML già aiuti o aiuterà in futuro la propria organizzazione a rilevare e rispondere più rapidamente alle minacce alla sicurezza, mentre il 76% concorda sul fatto che in qualche modo queste tecnologie aiuteranno a risolvere le carenze di competenze di sicurezza informatica sul posto di lavoro. I risultati della ricerca, che ha coinvolto 900 decision maker IT negli Stati Uniti, Regno Unito e Germania, riportano inoltre che l’82% degli intervistati ha già implementato un prodotto di sicurezza informatica che utilizza il ML mentre per il restante 18%, più della metà (53%) dichiara che le loro aziende stanno pianificando di utilizzare il ML nei prossimi 3-5 anni. Solo il 23% afferma che non è in previsione l’utilizzo di soluzioni di sicurezza basate su ML nel prossimo futuro.

    Il machine Learning come carburante per i prossimi cyberattacchi? Il caso EMOTET

    Eppure, come la maggior parte delle innovazioni, anche l’apprendimento automatico ha degli svantaggi e può essere utilizzata come arma di attacco da parte dei cybercriminali. Gli hacker riconoscono infatti le opportunità e il valore di questa tecnologia che può essere utilizzata in maniera distorta per creare nuovi ceppi di malware, colpire target specifici ed estrarre dati preziosi, proteggere l’infrastruttura dei criminali informatici – come le botnet – portando scompiglio e causando danni anche molto ingenti. Secondo i dati della ricerca di ESET questo timore è condiviso anche dai responsabili IT aziendali: il 66% degli intervistati concorda sul fatto che le nuove tecnologie legate al ML farà aumentare il numero di attacchi, mentre il 70% ritiene che il ML renderà le minacce più complesse e difficili da rilevare.

    Sfortunatamente, gli scenari in cui il ML viene utilizzato in maniera impropria non sono solo teorici e alcuni casi riscontrati in the wild e già analizzati dai ricercatori di ESET dimostrano che le tecnologie basate su ML sono già state utilizzate per scopi fraudolenti.

    E’ il caso di Emotet, una famiglia di Trojan bancari famosa per la sua architettura modulare, le tecniche di persistenza e il sistema di diffusione automatica simile a quello dei vecchi worm. I ricercatori di ESET sospettano che questa famiglia di malware utilizzi l’apprendimento automatico per migliorare la propria capacità di colpire vittime specifiche. Infatti, nonostante gli attacchi legati a Emotet compromettano migliaia di dispositivi ogni giorno, è sintomatico come questo malware sia capace di evitare gli strumenti di monitoraggio dei ricercatori di sicurezza, gli honeypot e le botnet tracker. Per ottenere questo, Emotet raccoglie la telemetria delle sue potenziali vittime e le invia al server C & C dei cybercriminali. Sulla base di questi input, il malware non solo preleva i moduli che devono essere inclusi nel payload finale ma sembra anche distinguere gli operatori umani reali dalle macchine virtuali e dagli ambienti automatizzati utilizzati dai ricercatori di sicurezza.

    Conoscere i limiti del ML per impostare la giusta strategia di sicurezza informatica

    Il ML rappresenta un inestimabile aiuto nelle odierne pratiche di sicurezza informatica, in particolare per la scansione del malware, essendo rapidamente in grado di analizzare e identificare la maggior parte delle potenziali minacce per gli utenti e agire in modo proattivo per sconfiggerle. E’ tuttavia importante comprenderne i limiti, a partire dalla necessità di verifica umana per la classificazione iniziale, per l’analisi di campioni potenzialmente dannosi e per la riduzione del numero di falsi positivi. Secondo gli esperti di ESET è imprescindibile utilizzare il Machine Learning – che è parte integrante delle soluzioni ESET – come elemento del sistema di sicurezza informatica ma che è necessario che le aziende adottino un approccio più strategico per costruire una difesa robusta. Le soluzioni a più livelli, unite a persone di talento e competenti, saranno l’unico modo per rimanere un passo avanti agli hacker mentre il panorama delle minacce informatiche continua ad evolversi.

    cybersecurity Eset Machine Learning sicurezza
    Share. Facebook Twitter LinkedIn Reddit Telegram WhatsApp Email
    Redazione LineaEDP
    • Facebook
    • X (Twitter)

    LineaEDP è parte di BitMAT Edizioni, una casa editrice che ha sede a Milano con copertura a 360° per quanto riguarda la comunicazione rivolta agli specialisti dell'lnformation & Communication Technology.

    Correlati

    Stranger Things & cybersecurity: lezioni dagli anni ’80 alla realtà attuale

    25/11/2025

    NATO e Google Cloud siglano un accordo multimilionario per un cloud sovrano abilitato dall’AI

    25/11/2025

    Attacchi cyber in crescita, normative in evoluzione: lo scenario italiano, europeo e globale

    25/11/2025
    Newsletter

    Iscriviti alla Newsletter per ricevere gli aggiornamenti dai portali di BitMAT Edizioni.

    Security Words

    INFRASTRUTTURA APPLICATIVA: PROTEGGIAMOLA

    29/01/2024

    PASSWORD E STRATEGIA

    29/01/2024
    BitMATv – I video di BitMAT
    Aikom Technology presenta la sicurezza del futuro a SICUREZZA 2025
    Non c’è produzione senza pianificazione
    Cybersecurity, tra nuove minacce e intelligenza artificiale: la visione di GCI System Integrator
    Jabra: innovazione audio e video per la collaborazione del futuro
    Dynatrace Innovate Roadshow 2025: l’intelligenza artificiale che anticipa il futuro del software
    Defence Tech

    Stranger Things & cybersecurity: lezioni dagli anni ’80 alla realtà attuale

    25/11/2025

    Attacchi cyber in crescita, normative in evoluzione: lo scenario italiano, europeo e globale

    25/11/2025

    NIS2 e il test delle 24 ore: andare oltre la conformità per costruire un business resiliente

    25/11/2025

    Prisma AIRS si arricchisce con Factory, Glean, IBM e ServiceNow

    24/11/2025
    Report

    I Chief Data Officer (CDO) protagonisti della trasformazione

    25/11/2025

    5G Standalone: l’acceleratore della connettività su misura

    21/11/2025

    L’AI nei servizi professionali secondo Compendium

    20/11/2025

    Intelligenza Artificiale: nuova alleata degli operatori del customer service

    14/11/2025
    Rete BitMAT
    • Bitmat
    • BitMATv
    • Top Trade
    • LineaEdp
    • ItisMagazine
    • Speciale Sicurezza
    • Industry 4.0
    • Sanità Digitale
    • Redazione
    • Contattaci
    NAVIGAZIONE
    • Cio
    • Cloud
    • Mercato
    • News
    • Tecnologia
    • Case History
    • Report
    • Sicurezza
    • IOT
    Chi Siamo
    Chi Siamo

    BitMAT Edizioni è una casa editrice che ha sede a Milano con una copertura a 360° per quanto riguarda la comunicazione online ed offline rivolta agli specialisti dell'lnformation & Communication Technology.

    Facebook X (Twitter) Instagram Vimeo LinkedIn RSS
    • Contattaci
    • Cookies Policy
    • Privacy Policy
    • Redazione
    © 2012 - 2025 BitMAT Edizioni - P.Iva 09091900960 - tutti i diritti riservati - Iscrizione al tribunale di Milano n° 293 del 28-11-2018 - Testata giornalistica iscritta al ROC

    Type above and press Enter to search. Press Esc to cancel.