• BitMAT
  • BitMATv
  • Top Trade
  • Linea EDP
  • Itis Magazine
  • Industry 5.0
  • Sanità Digitale
  • ReStart in Green
  • Contattaci
Close Menu
LineaEDPLineaEDP
    Facebook X (Twitter) Vimeo Instagram LinkedIn RSS
    Trending
    • Navigare in rete in modo sicuro: consigli pratici ed accorgimenti per non correre rischi
    • Attacchi informatici: Russia, UE e Asia nel mirino
    • Dynatrace e NVIDIA a supporto delle implementazioni di AI Factory
    • Sicurezza: AI sempre più sfidante
    • Oracle EU Sovereign Cloud conquista le organizzazioni tedesche
    • Progettare il futuro con Red Hat Enterprise Linux 10
    • AI e Partnership pilastri della strategia di SAP
    • Elisabetta Franchi: A Convention of Fashion and Imagination in Mold
    Facebook X (Twitter) Vimeo Instagram LinkedIn RSS
    LineaEDPLineaEDP
    • Cio
    • Cloud
    • Mercato
    • News
    • Tecnologia
    • Case History
    • Report
    • Sicurezza
    • IOT
    LineaEDPLineaEDP
    Sei qui:Home»News»Trasparenza e Explainability: due concetti chiave dell’AI

    Trasparenza e Explainability: due concetti chiave dell’AI

    By Redazione LineaEDP24/10/20245 Mins Read
    Facebook Twitter LinkedIn Reddit Telegram WhatsApp Email

    Lori MacVittie di F5 spiega cosa si intende per trasparenza e explainability in ambito AI e ne analizza gli elementi chiave da tenere in considerazione

    Trasparenza

    L’articolo di Lori MacVittie, Distinguished Engineer di F5, esplora i concetti di trasparenza ed explainability, fondamentali da comprendere e applicare quando si utilizza l’AI all’interno delle aziende.

    Buona lettura!

    I due concetti cruciali dell’Intelligenza Artificiale: trasparenza ed explainability

    La maggior parte delle analisi che cercano di comprendere le preoccupazioni riguardo l’AI raggruppano tutto, o quasi, sotto il termine “sicurezza”. Dai timori per la perdita di dati sensibili a questioni come allucinazioni e bias, dalle tattiche di prompt injection alla trasparenza e l’explainability, tutto sembra essere oggi responsabilità della “sicurezza” quando si parla di AI.

    Sebbene queste preoccupazioni siano assolutamente valide, sono molto diverse fra loro e la maggior parte non riguarda la sicurezza in maniera diretta. In questo articolo esploreremo i concetti di trasparenza ed explainability, fondamentali da comprendere e applicare quando si utilizza l’AI all’interno delle aziende.

    Insieme, trasparenza ed explainability non solo aiutano a stabilire fiducia nel sistema e nei suoi risultati, ma supportano anche la risoluzione dei problemi e il debugging dei sistemi, soprattutto durante lo sviluppo.

    Trasparenza ed explainability

    Trasparenza ed explainability sono concetti importanti a livello generale, ma diventano particolarmente rilevanti nell’ambito dell’AI, dato che la maggior parte dei professionisti, anche in ambito IT, non ha familiarità con il funzionamento di questi sistemi. Si tratta di principi molto spesso discussi nel contesto dell’AI etica, dell’AI responsabile e della governance dell’AI. Sebbene siano strettamente correlati, hanno significati distinti e servono a scopi diversi nella comprensione e nella gestione dei sistemi di AI stessi.

    La trasparenza si concentra nel fornire informazioni generali a un pubblico amplio, inclusi stakeholder, riguardo al sistema di AI. L’explainability, invece, è un concetto più specifico e mira a chiarire decisioni o risultati individuali agli utenti, sviluppatori e stakeholder che necessitano di comprendere il comportamento del sistema. La trasparenza mira a promuovere la fiducia nel sistema, mentre l’explainability si concentra sull’instaurare fiducia nei risultati specifici. Per raggiungere questi obiettivi, trasparenza ed explainability si focalizzano su elementi differenti.

    Trasparenza: cita sempre le tue fonti

    La trasparenza nell’AI si riferisce al grado in cui le informazioni sul design, il funzionamento e i processi decisionali di un sistema di AI sono aperte, accessibili e comprensibili agli stakeholder. Sottolinea la comunicazione chiara e la visibilità su come funzionano i sistemi di AI, permettendo agli stakeholder di capire i vari aspetti che compongono il sistema.

    Gli elementi chiave della trasparenza nell’AI includono:

    • Design e sviluppo: la trasparenza implica la condivisione di informazioni sul design, l’architettura e i processi di addestramento dei sistemi di AI. Questo include il tipo di dati utilizzati, gli algoritmi e i modelli implementati. In questo caso, il concetto di trasparenza è simile a quello delle dichiarazioni dei servizi finanziari in cui i fornitori spiegano quali dati e criteri vengono utilizzati per determinare l’idoneità per un mutuo o il punteggio FICO delle agenzie di credito.
    • Dati e input: la trasparenza richiede chiarezza sulle fonti e i tipi di dati utilizzati per addestrare e far funzionare il sistema di AI. Include anche la divulgazione di qualsiasi pre-elaborazione, trasformazione o aumento dei dati che alimentano il sistema. Questo tipo di informazione è simile alle dichiarazioni di raccolta dati, in cui le aziende spiegano quali dati raccolgono, conservano e con chi potrebbero condividerli.
    • Governance e responsabilità: fornire informazioni su chi è responsabile dello sviluppo, della distribuzione e della governance del sistema di AI aiuta gli stakeholder a comprendere la struttura stessa delle responsabilità.

    Explainability: mostra il lavoro fatto

    L’explainability nell’AI si riferisce alla capacità del sistema di AI di spiegare in modo chiaro e comprensibile perché ha preso determinate decisioni, quali fattori hanno influenzato i suoi risultati o come funziona il suo comportamento. Sottolinea quindi l’importanza di spiegare perché è stata presa una decisione particolare, concentrandosi sul rendere comprensibili agli utenti e agli stakeholder i risultati dell’AI.

    Gli elementi chiave dell’explainability nell’AI includono:

    • La giustificazione delle decisioni: l’explainability implica che i fattori e logiche che hanno portato a una specifica decisione o risultato da parte dell’intelligenza artificiale siano sempre chiari(ti). In pratica, si tratta di rispondere a domande come “Perché l’AI ha preso questa decisione?” e “Cosa ha influenzato questo risultato?”. In sostanza, è come fare una dimostrazione in geometria: è necessario fare affidamento su assiomi per spiegare il risultato.
    • Interpretabilità del modello: è importante rendere i modelli di IA interpretabili, in modo che gli stakeholder possano comprendere i meccanismi sottostanti alle decisioni. Ad esempio, non tutti comprendono il calcolo avanzato, quindi una spiegazione sotto forma di un’equazione complessa non è sufficiente. Ad esempio, c’è una notevole differenza tra il funzionamento di una Rete Generativa Avversaria (GAN) e una Rete Neurale Convoluzionale (CNN): divulgare quale approccio architettonico è utilizzato è una parte importante dell’interpretabilità.
    • Comprensibilità umana: la stessa spiegazione deve essere condivisa in un formato facilmente comprensibile dagli esseri umani, inclusi i non esperti. Questo richiede che le operazioni complesse di AI vengano presentate in maniera semplice e chiara. Non è possibile condividere la spiegazione attraverso un codice, al contrario è fondamentale utilizzare un formato leggibile da tutti gli stakeholder, inclusi i team legal, compliance e di ingegneria.

    Costruire fiducia nell’AI

    Ogni nuova tecnologia richiede tempo perché ottenga fiducia. Quindici anni fa, nessuno si fidava delle applicazioni di auto-scaling, eppure oggi sono considerate fondamentali. L’automazione di qualsiasi tipo, che si tratti di risolvere problemi matematici complessi, guidare un’automobile o pagare le bollette, richiede tempo perché gli utenti si fidino. La trasparenza sul processo e la spiegazione di come funziona il sistema possono ridurre significativamente il divario tra introduzione e adozione.

    La trasparenza fornisce una visione ampia del funzionamento del sistema di AI, mentre l’explainability chiarisce quali fattori e logiche hanno portato a una specifica decisione o risultato da parte dell’intelligenza artificiale. Entrambi sono fondamentali per il successo dell’AI e per permettere alle aziende di realizzarne i benefici, come un miglior servizio clienti, una produttività migliorata e decisioni più rapide. E nessuno dei due rientra esclusivamente nella sfera della sicurezza!

    di Lori MacVittie, Distinguished Engineer di F5

    adozione dell'AI F5 intelligenza artificiale (AI) Lori MacVittie trasparenza e explainability
    Share. Facebook Twitter LinkedIn Reddit Telegram WhatsApp Email
    Redazione LineaEDP
    • Facebook
    • X (Twitter)

    LineaEDP è parte di BitMAT Edizioni, una casa editrice che ha sede a Milano con copertura a 360° per quanto riguarda la comunicazione rivolta agli specialisti dell'lnformation & Communication Technology.

    Correlati

    Navigare in rete in modo sicuro: consigli pratici ed accorgimenti per non correre rischi

    21/05/2025

    Attacchi informatici: Russia, UE e Asia nel mirino

    21/05/2025

    Dynatrace e NVIDIA a supporto delle implementazioni di AI Factory

    21/05/2025
    Newsletter

    Iscriviti alla Newsletter per ricevere gli aggiornamenti dai portali di BitMAT Edizioni.

    Security Words

    INFRASTRUTTURA APPLICATIVA: PROTEGGIAMOLA

    29/01/2024

    PASSWORD E STRATEGIA

    29/01/2024
    BitMATv – I video di BitMAT
    Transizione 5.0: vuoi il 45% sui software?
    Stormshield: Zero Trust pilastro della security aziendale
    RENTRI: regole pratiche per uscirne vivi
    Vertiv: come evolve il mondo dei data center
    2VS1 incontra GCI: focus sulle competenze
    Defence Tech

    Attacchi informatici: Russia, UE e Asia nel mirino

    21/05/2025

    Sicurezza: AI sempre più sfidante

    21/05/2025

    Computer ICS sempre sotto minaccia cyber: l’analisi di Kaspersky

    20/05/2025

    TA406: cybercrime contro le entità governative ucraine

    19/05/2025
    Report

    Aziende italiane e Intelligenza Artificiale: a che punto siamo?

    12/05/2025

    L’AI irrompe nel manufacturing

    02/05/2025

    L’AI è il futuro, ma senza dati rimane solo una promessa

    02/05/2025

    IBM X-Force Threat Index 2025: vecchi e nuovi trend delle minacce cyber

    18/04/2025
    Rete BitMAT
    • Bitmat
    • BitMATv
    • Top Trade
    • LineaEdp
    • ItisMagazine
    • Speciale Sicurezza
    • Industry 4.0
    • Sanità Digitale
    • Redazione
    • Contattaci
    NAVIGAZIONE
    • Cio
    • Cloud
    • Mercato
    • News
    • Tecnologia
    • Case History
    • Report
    • Sicurezza
    • IOT
    Chi Siamo
    Chi Siamo

    BitMAT Edizioni è una casa editrice che ha sede a Milano con una copertura a 360° per quanto riguarda la comunicazione online ed offline rivolta agli specialisti dell'lnformation & Communication Technology.

    Facebook X (Twitter) Instagram Vimeo LinkedIn RSS
    • Contattaci
    • Cookies Policy
    • Privacy Policy
    • Redazione
    © 2012 - 2025 BitMAT Edizioni - P.Iva 09091900960 - tutti i diritti riservati - Iscrizione al tribunale di Milano n° 293 del 28-11-2018 - Testata giornalistica iscritta al ROC

    Type above and press Enter to search. Press Esc to cancel.