• BitMAT
  • BitMATv
  • Top Trade
  • Linea EDP
  • Itis Magazine
  • Industry 5.0
  • Sanità Digitale
  • ReStart in Green
  • Contattaci
Close Menu
LineaEDPLineaEDP
    Facebook X (Twitter) Vimeo Instagram LinkedIn RSS
    Trending
    • AI: costruirla partendo dai dati in tempo reale
    • IA e personalizzazione delle esperienze digitali
    • Il digitale in Italia raccoglie i frutti seminati dall’AI
    • RETN annuncia una nuova tratta ad alte prestazioni tra Milano e Padova
    • Cloud: cosa sta cambiando con l’AI?
    • Cloud security: un acceleratore verso crescita e innovazione
    • Vertiv Academy: il training center di Vertiv per gli ingegneri in EMEA
    • Continuità Digitale: leva strategica per l’evoluzione dell’A&D
    Facebook X (Twitter) Vimeo Instagram LinkedIn RSS
    LineaEDPLineaEDP
    • Cio
    • Cloud
    • Mercato
    • News
    • Tecnologia
    • Case History
    • Report
    • Sicurezza
    • IOT
    LineaEDPLineaEDP
    Sei qui:Home»Featured»L’IA non discrimina, i dati sì

    L’IA non discrimina, i dati sì

    By Redazione LineaEDP15/09/20235 Mins Read
    Facebook Twitter LinkedIn Reddit Telegram WhatsApp Email

    E’ possibile che l’intelligenza artificiale fornisca output discriminatori? La risposta è sì, ma la responsabilità di ciò non riguarda l’algoritmo di intelligenza artificiale in sé, bensì i dati sui quali è stato addestrato

    IA-dati
    Roberto Carrozzo, Head of Intelligence & Data Minsait

    Qual è il motore dell’intelligenza artificiale (IA)? Cosa si nasconde dietro le quinte di ChatGPT, Dall-E, Bard, gli algoritmi di raccomandazione? È possibile che i risultati degli algoritmi di intelligenza artificiale siano sessisti, razzisti o, più in generale, discriminatori? Sono domande legittime che meritano una risposta esaustiva soprattutto al fine di chiarire alcuni meccanismi di funzionamento base dell’intelligenza artificiale.

    Nell’ultimo anno abbiamo assistito alla ribalta di servizi come ChatGPT e Midjourney che hanno fatto toccare con mano a tutti (anche a quei parenti che ci chiedono aiuto per cambiare suoneria al telefono) le potenzialità e le opportunità dell’intelligenza artificiale. Ma oltre alle novità scintillanti che arrivano dalla Silicon Valley, per avere una scala del fenomeno, basti considerare che anche in Italia lo scorso anno è stato un anno record per quanto riguarda gli investimenti in IA: il mercato dell’intelligenza artificiale ha raggiunto nel nostro paese i 500 milioni di euro, facendo registrare una crescita del 32% rispetto all’anno precedente (Osservatorio Artificial Intelligence del Politecnico di Milano).

    Ma torniamo alle nostre domande. Il motore dell’intelligenza artificiale sono i dati. Gli algoritmi di IA, per funzionare, hanno bisogno di un ampio set di dati per imparare a svolgere mansioni specifiche. Queste mansioni possono riguardare, per fare un esempio, il riconoscimento di immagini o la produzione di testi. Attraverso i training data l’IA impara a riconoscere un gatto da un cane, impara a scrivere un’email o una ricetta. Questi dati possono essere di diverse tipologie: strutturati, ad esempio provenienti da un file Excel in cui ogni campo ha uno scopo definito; non strutturati, ad esempio immagini, testi, video o audio, che non seguono una struttura chiara o non hanno una definizione univoca.

    Anche le pagine web possono essere fonte di training data e possono rivelarsi particolarmente utili per algoritmi di Natural Language Processing ovvero in grado di comprendere e generare un testo in forma di linguaggio naturale. Di questa categoria fanno parte, ad esempio, i Large Language Model (LLM) come ChatGPT di OpenAI e Bard di Google. Ma, sebbene fosse una pratica piuttosto diffusa quella di addestrare i LLM con dati presi da siti web, ultimamente piattaforme come Reddit, X, Stack Overflow, stanno aumentando i costi per accedere ai loro contenuti, mentre siti d’informazione come il New York Times minacciano di portare in tribunale OpenAI per aver utilizzato i propri contenuti per addestrare ChatGPT.

    Queste informazioni sono la materia prima grazie alla quale i software di intelligenza artificiale possono funzionare, e come ogni materia prima questi dati devono avere un costo per chi li usa e ne ricava un profitto. Proprio per questo motivo è possibile che in futuro sempre più piattaforme sfrutteranno a proprio vantaggio il business model di fornire dati a pagamento a chi li utilizzerà per addestrare i propri modelli di intelligenza artificiale.

    Ma arriviamo all’ultima questione: è possibile che l’intelligenza artificiale fornisca output discriminatori? La risposta è sì, ma la responsabilità di ciò non riguarda l’algoritmo di intelligenza artificiale in sé, bensì i dati sui quali è stato addestrato.

    E sono proprio i training data che creano bias discriminatori, per una duplice ragione: in primis perché riflettono dati reali della società che purtroppo è di per sé discriminatoria, e questo ha ripercussioni sulle informazioni che genera l’algoritmo; in secondo luogo, può capitare che il team che sviluppa un sistema di intelligenza artificiale selezioni dati sbilanciati, incompleti, non inclusivi, andando a pregiudicare gli output dell’algoritmo che saranno sempre basati su quelle informazioni faziose.

    Possiamo fare due esempi concreti che riguardano in particolare la discriminazione di genere. Il primo concerne algoritmi di IA utilizzati per la selezione e l’assunzione del personale: se un algoritmo viene addestrato su dati di un settore storicamente dominato dagli uomini, questo potrebbe favorire candidati maschi a dispetto delle candidate donne. Il secondo invece riguarda la prevenzione di malattie, che può arrivare a mettere a rischio la salute delle donne: negli Stati Uniti, il Department of Veterans Affairs aveva sviluppato con Deepmind un algoritmo per la predizione dell’insufficienza renale, che però funzionava meglio su persone di sesso maschile perché era stato allenato prevalentemente con dati provenienti da persone di sesso maschile.

    Sono temi molto delicati attorno ai quali si sviluppano anche i primi tentativi di regolamentazione per favorire sistemi di IA che siano conformi ai valori democratici e alle leggi in vigore, basti pensare all’AI Act approvato lo scorso giugno dal Parlamento europeo. Ma la regolamentazione, per quanto importante, è solo un tassello del puzzle. Sarà prioritario sviluppare un dibattito etico su queste tematiche coinvolgendo gli attori pubblici e privati che contribuiscono al futuro dell’intelligenza artificiale. Sarà fondamentale fornire gli strumenti alle persone per sviluppare consapevolezza sul funzionamento e sulle opportunità offerte dagli algoritmi di IA.

    Stiamo vivendo una fase storica che sarà ricordata come il crocevia fondamentale per quello che sarà il futuro dell’intelligenza artificiale e solo attraverso la consapevolezza, il dibattito e l’impegno di tutti gli attori coinvolti potremo sviluppare sistemi di intelligenza artificiale equi e non discriminatori.

     

    A cura di Roberto Carrozzo, Head of Intelligence & Data Minsait

    dati intelligenza artificiale (IA) Minsait
    Share. Facebook Twitter LinkedIn Reddit Telegram WhatsApp Email
    Redazione LineaEDP
    • Facebook
    • X (Twitter)

    LineaEDP è parte di BitMAT Edizioni, una casa editrice che ha sede a Milano con copertura a 360° per quanto riguarda la comunicazione rivolta agli specialisti dell'lnformation & Communication Technology.

    Correlati

    AI: costruirla partendo dai dati in tempo reale

    03/07/2025

    IA e personalizzazione delle esperienze digitali

    03/07/2025

    Il digitale in Italia raccoglie i frutti seminati dall’AI

    03/07/2025
    Newsletter

    Iscriviti alla Newsletter per ricevere gli aggiornamenti dai portali di BitMAT Edizioni.

    Security Words

    INFRASTRUTTURA APPLICATIVA: PROTEGGIAMOLA

    29/01/2024

    PASSWORD E STRATEGIA

    29/01/2024
    BitMATv – I video di BitMAT
    ExpertBook P5, il notebook con l’AI integrata
    La tua fabbrica è resiliente?
    Legrand Data Center al Data Center Nation per parlare del data center del futuro!
    Snom: focus su tecnologia e partner
    Cumulabilità Transizione 5.0 e ZES: i vantaggi del Litio
    Defence Tech

    Industria sotto attacco: l’Italia tra i Paesi più colpiti. Serve agire

    02/07/2025

    La sicurezza del cloud rimane tra le priorità principali delle aziende

    01/07/2025

    Spionaggio e cybercrime si sovrappongono. La scoperta di Proofpoint

    01/07/2025

    Imprese italiane e l’evoluzione delle minacce informatiche

    30/06/2025
    Report

    Il digitale in Italia raccoglie i frutti seminati dall’AI

    03/07/2025

    Continuità Digitale: leva strategica per l’evoluzione dell’A&D

    03/07/2025

    GenAI: aumenta l’adozione, ma anche i rischi

    02/07/2025

    Adozione dell’AI: crescita vertiginosa tra gli impiegati

    01/07/2025
    Rete BitMAT
    • Bitmat
    • BitMATv
    • Top Trade
    • LineaEdp
    • ItisMagazine
    • Speciale Sicurezza
    • Industry 4.0
    • Sanità Digitale
    • Redazione
    • Contattaci
    NAVIGAZIONE
    • Cio
    • Cloud
    • Mercato
    • News
    • Tecnologia
    • Case History
    • Report
    • Sicurezza
    • IOT
    Chi Siamo
    Chi Siamo

    BitMAT Edizioni è una casa editrice che ha sede a Milano con una copertura a 360° per quanto riguarda la comunicazione online ed offline rivolta agli specialisti dell'lnformation & Communication Technology.

    Facebook X (Twitter) Instagram Vimeo LinkedIn RSS
    • Contattaci
    • Cookies Policy
    • Privacy Policy
    • Redazione
    © 2012 - 2025 BitMAT Edizioni - P.Iva 09091900960 - tutti i diritti riservati - Iscrizione al tribunale di Milano n° 293 del 28-11-2018 - Testata giornalistica iscritta al ROC

    Type above and press Enter to search. Press Esc to cancel.