• BitMAT
  • BitMATv
  • Top Trade
  • Linea EDP
  • Itis Magazine
  • Industry 5.0
  • Sanità Digitale
  • ReStart in Green
  • Contattaci
Close Menu
LineaEDPLineaEDP
    Facebook X (Twitter) Vimeo Instagram LinkedIn RSS
    Trending
    • Dynatrace e ServiceNow rafforzano la collaborazione strategica per sostenere operazioni IT autonome
    • Endpoint Privilege Security: non più un lusso, ma una necessità
    • Data Quality: il primo passo per diventare davvero AI-ready
    • Attacchi potenziati dall’IA: le difese aziendali arrancano
    • Sparkdit e ATON IT trasformano l’eCommerce con l’AI spiegabile
    • 8route accelera la connettività del Sud Italia con OpenHubMed
    • Architetture di rete sicure per l’IA generativa: le linee guida di AWS
    • EF sceglie Oracle Fusion Cloud Applications per semplificare la gestione delle operazioni globali e accelerare la crescita
    Facebook X (Twitter) Vimeo Instagram LinkedIn RSS
    LineaEDPLineaEDP
    • Cio
    • Cloud
    • Mercato
    • News
    • Tecnologia
    • Case History
    • Report
    • Sicurezza
    • IOT
    LineaEDPLineaEDP
    Sei qui:Home»Featured»Navigare in sicurezza nel panorama dell’AI: l’approccio ibrido

    Navigare in sicurezza nel panorama dell’AI: l’approccio ibrido

    By Redazione LineaEDP18/12/20235 Mins Read
    Facebook Twitter LinkedIn Reddit Telegram WhatsApp Email

    Oggi le aziende guardano all’adozione dell’AI per rimanere competitive, comprendere meglio i clienti e aumentare la propria efficienza. Ma come approcciarla?

    Red Hat-AI-approccio ibrido
    Erica Langhi, Senior Solutions Architect EMEA, Red Hat

    Oggi le aziende guardano all’adozione dell’AI per rimanere competitive, comprendere meglio i clienti e aumentare la propria efficienza. Tuttavia, se l’entusiasmo generale intorno al potenziale di questa tecnologia continua a crescere, sono molte le iniziative che faticano ad affermarsi. Tra le ragioni principali c’è la mancanza di una piattaforma collaborativa supportata da una solida infrastruttura cloud ibrida. Senza di essa, il successo sarà molto difficilmente raggiungibile.

    La promessa dell’AI è difficile da ignorare. I nuovi strumenti basati sull’intelligenza artificiale aiutano le aziende a lavorare in modo intelligente automatizzando le attività più banali. Inoltre, forniscono informazioni più precise sui dati che possono trasformare l’esperienza dei clienti, favorire un risparmio e identificare nuove opportunità. I CIO sentono la pressione di dover perseguire questo approccio per non rimanere indietro rispetto alla concorrenza.

    La realtà, però, è che le aziende hanno difficoltà a trasformare i progetti pilota di intelligenza artificiale in produzione. I costi e la complessità che ne derivano gravano sui team di data science che non dispongono della giusta maturità operativa, e l’infrastruttura non è in grado di soddisfare i pesanti carichi di lavoro, senza contare che i silos esistenti tra sviluppatori, data engineer e IT ops rallentano i progressi.

    Fiducia attraverso la spiegabilità dei modelli

    Nel regno dell’AI, la fiducia è fondamentale. La spiegabilità del modello diventa cruciale per stabilire la fiducia in quanto risolve le preoccupazioni legate alla natura di “scatola nera” dei grandi modelli di apprendimento automatico. Molte aziende esitano ad adottarla a causa del comprensibile scetticismo nei confronti dei risultati dei modelli. Come si fa a credere che le raccomandazioni dell’AI riflettano accuratamente la realtà? Questo aspetto è particolarmente preoccupante per settori avversi al rischio come la sanità e i servizi finanziari.

    La spiegabilità del modello non è solo una questione di comprensione del suo funzionamento interno, ma anche di garanzia del fatto che sia stato addestrato su dati contestuali, proprietari e verificati. I dati più preziosi per i casi d’uso aziendali sono infatti quelli proprietari, rinchiusi nei sistemi legacy e nei data center privati. I modelli addestrati su asset di dati proprietari puliti, convalidati e arricchiti possono garantire che i risultati dell’AI derivino da dati reali e veritieri, unici per ciascuna organizzazione.

    Ad esempio, addestrando i chatbot del servizio clienti su anni di trascrizioni di chiamate clienti, si garantisce che le risposte corrispondano a conversazioni reali anziché imitare i dialoghi online. Allo stesso modo, in Ansible Lightspeed, i modelli vengono addestrati su playbook Ansible realmente funzionanti, con risultati non sono teoricamente validi, ma anche pratici e attuabili.

    I dati verificati confluiscono nei modelli attraverso pipeline ibride. Così, quando l’AI implementata prende decisioni, fornisce raccomandazioni o genera automaticamente codice, è possibile spiegare quali fattori e dati hanno formato il modello. Questa trasparenza crea una fiducia giustificata nell’AI adottata.

    Il problema principale di questo approccio è che molte organizzazioni, soprattutto quelle altamente regolamentate, esitano a trasferire dati proprietari nel cloud. In alcuni casi non possono semplicemente farlo a causa dei requisiti legali e normativi, che rendono indispensabile mantenere i dati in sede.

    Flessibilità con risorse a tempo pieno

    È qui che incontriamo un ulteriore grande problema: lo sviluppo e l’addestramento di modelli di intelligenza artificiale assorbono cicli di calcolo massicci, che vanno ben oltre la capacità dei data center tradizionali. La natura variabile del lavoro della scienza dei dati richiede anche una scalabilità dell’infrastruttura, che conferma la necessità di disporre della potenza di calcolo e flessibilità offerte dal cloud pubblico.

    Senza un’adeguata governance, i costi del cloud pubblico possono andare facilmente fuori controllo. I team che si occupano di scienza dei dati hanno bisogno di un accesso flessibile alle risorse del cloud pubblico come estensione del cloud privato. Un modello ibrido fornisce l’ambiente di formazione più agile ed efficiente in termini di costi, eliminando la capacità inutilizzata. Il cloud ibrido consente di utilizzare il cloud pubblico solo quando è necessario per soddisfare richieste temporanee, permettendo al contempo ai dati di risiedere in sede.

    Un ulteriore vantaggio dell’approccio ibrido riguarda le questioni ambientali, sociali e di governance. Consumatori e clienti sono sempre più motivati dalle questioni ESG e indirizzano il loro potere di spesa verso organizzazioni con un quadro di riferimento consolidato. Le strutture cloud ibride forniscono un approccio equilibrato alla gestione dei costi e alla sostenibilità ambientale, ottimizzando le risorse in base ai requisiti specifici del progetto e assicurando che le iniziative di AI rimangano efficienti dal punto di vista dei costi e responsabili dal punto di vista ambientale. La flessibilità offerta da un cloud ibrido consente un’allocazione dinamica delle risorse, evitando spese inutili e riducendo l’impronta di carbonio complessiva associata alla formazione di modelli di AI.

    Il viaggio verso l’eccellenza dell’AI comporta il raggiungimento di un delicato equilibrio. L’era dell’AI richiede non solo abilità tecnica, ma anche acume strategico nella gestione dei dati proprietari, nella garanzia della conformità legale e nell’ottimizzazione delle risorse. Il cloud ibrido emerge come perno di questa narrazione, offrendo una soluzione olistica che allinea il potenziale dell’intelligenza artificiale con gli imperativi della moderna governance aziendale. Con un panorama dell’AI in continua evoluzione, abbracciare una strategia incentrata sul cloud ibrido non rappresenta solo una possibile scelta, ma si rivela un imperativo per il successo.

    A cura di Erica Langhi, Senior Solutions Architect EMEA, Red Hat

    AI Red Hat
    Share. Facebook Twitter LinkedIn Reddit Telegram WhatsApp Email
    Redazione LineaEDP
    • Facebook
    • X (Twitter)

    LineaEDP è parte di BitMAT Edizioni, una casa editrice che ha sede a Milano con copertura a 360° per quanto riguarda la comunicazione rivolta agli specialisti dell'lnformation & Communication Technology.

    Correlati

    Dynatrace e ServiceNow rafforzano la collaborazione strategica per sostenere operazioni IT autonome

    28/10/2025

    Data Quality: il primo passo per diventare davvero AI-ready

    28/10/2025

    Attacchi potenziati dall’IA: le difese aziendali arrancano

    28/10/2025
    Newsletter

    Iscriviti alla Newsletter per ricevere gli aggiornamenti dai portali di BitMAT Edizioni.

    Security Words

    INFRASTRUTTURA APPLICATIVA: PROTEGGIAMOLA

    29/01/2024

    PASSWORD E STRATEGIA

    29/01/2024
    BitMATv – I video di BitMAT
    Networking: il software al centro
    Modula: l’automazione che rivoluziona la logistica industriale
    La cybersecurity spinge il business
    L’AI è vietata in azienda?
    Il cloud introduce ulteriore complessità nella cybersecurity: focus sulle identità
    Defence Tech

    Endpoint Privilege Security: non più un lusso, ma una necessità

    28/10/2025

    Attacchi potenziati dall’IA: le difese aziendali arrancano

    28/10/2025

    Cybersecurity industriale: criticità strutturali che espongono ad attacchi informatici

    27/10/2025

    Cybersicurezza: serve un cambio di paradigma nei processi

    27/10/2025
    Report

    Il settore tecnologico è davvero inclusivo?

    23/10/2025

    Digital Defense Report 2025: attacchi ed attaccanti si evolvono

    20/10/2025

    Il Rapporto OAD 2025 di AIPSI è online

    20/10/2025

    Wolters Kluwer anticipa il futuro della professione contabile e fiscale

    17/10/2025
    Rete BitMAT
    • Bitmat
    • BitMATv
    • Top Trade
    • LineaEdp
    • ItisMagazine
    • Speciale Sicurezza
    • Industry 4.0
    • Sanità Digitale
    • Redazione
    • Contattaci
    NAVIGAZIONE
    • Cio
    • Cloud
    • Mercato
    • News
    • Tecnologia
    • Case History
    • Report
    • Sicurezza
    • IOT
    Chi Siamo
    Chi Siamo

    BitMAT Edizioni è una casa editrice che ha sede a Milano con una copertura a 360° per quanto riguarda la comunicazione online ed offline rivolta agli specialisti dell'lnformation & Communication Technology.

    Facebook X (Twitter) Instagram Vimeo LinkedIn RSS
    • Contattaci
    • Cookies Policy
    • Privacy Policy
    • Redazione
    © 2012 - 2025 BitMAT Edizioni - P.Iva 09091900960 - tutti i diritti riservati - Iscrizione al tribunale di Milano n° 293 del 28-11-2018 - Testata giornalistica iscritta al ROC

    Type above and press Enter to search. Press Esc to cancel.