• BitMAT
  • BitMATv
  • Top Trade
  • Linea EDP
  • Itis Magazine
  • Industry 5.0
  • Sanità Digitale
  • ReStart in Green
  • Speciale Data Center
  • Contattaci
Close Menu
LineaEDPLineaEDP
    Facebook X (Twitter) Vimeo Instagram LinkedIn RSS
    Trending
    • CrowdStrike Falcon è ora disponibile sul marketplace Microsoft
    • ABLE TECH integra la Generative AI nella suite ARXivar
    • Verso il cloud sovrano: come governare la transizione?
    • SOC e intelligenza artificiale in Italia: il 100% delle aziende pronta all’adozione
    • PromptSpy, la prima minaccia Android a utilizzare l’AI generativa
    • Con il 2026 l’AI non è più fine a se stessa
    • Con KATA 8.0 Kaspersky potenzia le sue funzionalità di rilevamento e risposta di rete
    • Salesforce firma un accordo definitivo per l’acquisizione di Momentum
    Facebook X (Twitter) Vimeo Instagram LinkedIn RSS
    LineaEDPLineaEDP
    • Cio
    • Cloud
    • Mercato
    • News
    • Tecnologia
    • Case History
    • Report
    • Sicurezza
    • IOT
    LineaEDPLineaEDP
    Sei qui:Home»Categorie Funzionali»Posizione Home-Page»L’Intelligenza Artificiale personalizzata è il futuro

    L’Intelligenza Artificiale personalizzata è il futuro

    By Redazione LineaEDP28/07/20255 Mins Read
    Facebook Twitter LinkedIn Reddit Telegram WhatsApp Email

    Tra sfide di implementazione e vantaggi, l’Intelligenza Artificiale personalizzata è il futuro delle aziende. Ce ne parla Marco Del Plato di Nutanix Italia

    intelligenza-artificiale

    Nell’articolo che condividiamo di seguito, Marco Del Plato, Senior Manager, Systems Engineering di Nutanix Italy, spiega perché oggi l’Intelligenza Artificiale (IA) generica non è più sufficiente e analizza i benefici che un’IA personalizzata porta a vari settori di mercato.

    Buona lettura!

    Intelligenza artificiale su misura: il futuro è la personalizzazione

    Negli ultimi anni l’Intelligenza Artificiale ha compiuto progressi straordinari. In particolare, l’IA Generativa (GenAI) ha conosciuto una rapida diffusione, trovando applicazione in ambiti sempre più ampi: dall’automazione del servizio clienti all’analisi avanzata dei dati. Tuttavia, l’efficacia di un modello “universale” sta mostrando i suoi limiti. Le aziende, infatti, stanno scoprendo che le soluzioni di IA generiche spesso non rispondono alle esigenze specifiche dei loro settori di riferimento.

    Secondo le previsioni di Gartner, entro il 2027 oltre il 50% dei modelli di IA sarà personalizzato in base al settore o al contesto applicativo. Questa personalizzazione porterà a risultati più precisi e rilevanti, grazie all’addestramento dei modelli su set di dati mirati, in grado di riflettere le dinamiche e le sfide proprie di ciascun settore.

    Perchè l’Intelligenza Artificiale generica non è sufficiente

    Sempre più aziende stanno sperimentando modelli di Intelligenza Artificiale “generalisti”, ma nella pratica si scontrano con limiti concreti. Un esempio evidente è il settore sanitario: un modello non addestrato su dati clinici specifici può incontrare difficoltà nell’interpretazione di immagini radiografiche. Analogamente, nel settore finanziario, un modello generico spesso non è in grado di individuare tentativi di frode, perché non riconosce i pattern sofisticati propri di questo ambito.

    Inoltre, l’addestramento di modelli IA su dati specifici di un settore richiede spesso un approccio diverso, che parte dalla raccolta e gestione di dataset di alta qualità e rappresentativi nonché competenze spefiche. Senza dati ben strutturati, anche il miglior modello IA rimane limitato nelle sue capacità, con conseguenti sprechi di risorse e decisioni errate. Per questo motivo sempre più aziende puntano su soluzioni di IA specifiche per il proprio settore, poiché rispondono meglio alle loro esigenze concrete e generano un impatto diretto sulle attività aziendali.

    I settori in cui la personalizzazione è fondamentale

    I benefici di un’Intelligenza Artificiale specifica per il settore di appartenenza sono ben visibili in ogni settore, per esempio:

    • Sanità: l’IA ricopre un ruolo sempre più rilevante nel riconoscimento delle immagini mediche, come ad esempio l’analisi di risonanze magnetiche e di radiografie. I modelli personalizzati possono rilevare minime anomalie difficili da individuare dai medici, aumentando così l’accuratezza delle diagnosi e contribuendo a salvare vite.
    • Ricerca e istruzione: università e centri di ricerca utilizzano l’Intelligenza Artificiale per le analisi di dati complessi. A seconda dell’ambito, i modelli possono, ad esempio, analizzare set di dati genetici, simulare i cambiamenti climatici o studiare i modelli linguistici. Spesso però i modelli generici non possiedono la capacità di analisi approfondita e la precisione necessarie per offrire risultati realmente utili.
    • Settore finanziario: banche e compagnie assicurative si affidano all’IA per rilevare frodi e per l’analisi del rischio. Gli algoritmi addestrati specificamente sui dati delle transazioni sono in grado di riconoscere schemi sospetti che altrimenti potrebbero passare inosservati. Ciò contribuisce a rendere l’ecosistema finanziario più sicuro.
    • Industria manifatturiera: in questo settore, l’Intelligenza Artificiale è utilizzata per il controllo qualità e la manutenzione predittiva. I modelli sviluppati per questo specifico ambito sono in grado di rilevare anomalie nelle linee di produzione o prevedere quando le macchine necessitano di interventi, aumentando l’efficienza e riducendo i tempi di inattività.

    Le sfide nell’implementazione dell’IA su misura

    Nonostante i vantaggi dell’Intelligenza Artificiale su misura per i vari settori di mercato siano evidenti, la sua implementazione porta anche alcune sfide. Le aziende che vogliono adottare modelli IA personalizzati devono tenere conto di diversi importanti fattori:

    • Qualità e disponibilità dei dati: il successo dell’IA dipende dalla qualità dei dati su cui viene addestrato il modello. Sono necessari dataset affidabili, ben strutturati e rappresentativi. Questo comporta un approccio accurato alla raccolta, alla pulizia e alla classificazione dei dati.
    • Requisiti infrastrutturali: i modelli di IA richiedono notevoli risorse di calcolo e capacità di archiviazione. Le aziende devono disporre di infrastrutture scalabili per poter addestrare e distribuire i modelli in modo efficiente.
    • Competenze: sviluppare e addestrare modelli specifici per un settore richiede conoscenze altamente specialistiche. Data scientist ed esperti di Intelligenza Artificiale svolgono un ruolo fondamentale, ma sono ancora figure difficili da reperire sul mercato. Investire nei talenti giusti e in partnership strategiche è quindi essenziale.

    Il ruolo di un’infrastruttura solida

    Un’infrastruttura IT solida è fondamentale per l’implementazione efficace di soluzioni di IA, soprattutto quando si tratta di applicazioni complesse e specifiche di un determinato settore. Un’infrastruttura flessibile e scalabile permette di addestrare, testare e distribuire i modelli di IA in modo efficiente, senza la necessità di investire ogni volta in nuove tecnologie. Tutto ciò semplifica l’adozione dell’Intelligenza Artificiale e ne accelera l’integrazione all’interno delle aziende.

    Con un’infrastruttura pensata per il futuro, le aziende riescono ad adattarsi velocemente e a ottimizzare i modelli IA in base al mutare delle esigenze. Ciò è particolarmente importante per l’Intelligenza Artificiale settoriale, dove i modelli devono essere aggiornati costantemente e addestrati su nuovi dataset per mantenersi efficaci e pertinenti.

    L’IA personalizzata come vantaggio strategico

    L’Intelligenza Artificiale settoriale non è più una soluzione di nicchia bensì un passo essenziale per le aziende che desiderano sfruttare appieno il potenziale dell’IA. Le aziende che puntano sulla personalizzazione ottengono prestazioni superiori, ottimizzazione delle risorse e capacità di innovare più rapidamente.

    Un approccio strategico all’IA, capace di trovare il giusto equilibrio tra dati, infrastruttura e competenze rappresenta la chiave del successo. Investendo su basi solide, le aziende possono utilizzare l’Intelligenza Artificiale in modo efficace e mirato, ottenendo un vantaggio competitivo in un mondo sempre più guidato dall’automazione e dalle tecnologie intelligenti.

    di Marco Del Plato, Senior Manager, Systems Engineering, Nutanix Italy

    IA personalizzata intelligenza artificiale (AI) Marco Del Plato Nutanix
    Share. Facebook Twitter LinkedIn Reddit Telegram WhatsApp Email
    Redazione LineaEDP
    • Facebook
    • X (Twitter)

    LineaEDP è parte di BitMAT Edizioni, una casa editrice che ha sede a Milano con copertura a 360° per quanto riguarda la comunicazione rivolta agli specialisti dell'lnformation & Communication Technology.

    Correlati

    CrowdStrike Falcon è ora disponibile sul marketplace Microsoft

    20/02/2026

    Verso il cloud sovrano: come governare la transizione?

    20/02/2026

    TXT Industrial e Aerea insieme per trasformare l’aerospace

    19/02/2026
    Newsletter

    Iscriviti alla Newsletter per ricevere gli aggiornamenti dai portali di BitMAT Edizioni.

    Security Words

    INFRASTRUTTURA APPLICATIVA: PROTEGGIAMOLA

    29/01/2024

    PASSWORD E STRATEGIA

    29/01/2024
    BitMATv – I video di BitMAT
    2VS1 incontra GCI: il Presales tra strategia, tecnologia e metodo
    Snom amplia l’ecosistema delle comunicazioni professionali
    Cybersecurity tra presente e futuro: minacce, trend e strategie per il 2026
    RS Italia, sostenibilità come leva strategica per la filiera
    Dal Forum Fiscale di Wolters Kluwer Italia le voci e le idee che stanno cambiando la professione
    Defence Tech

    SOC e intelligenza artificiale in Italia: il 100% delle aziende pronta all’adozione

    20/02/2026

    PromptSpy, la prima minaccia Android a utilizzare l’AI generativa

    20/02/2026

    Con KATA 8.0 Kaspersky potenzia le sue funzionalità di rilevamento e risposta di rete

    19/02/2026

    L’AI più impara più rende le organizzazioni vulnerabili agli attacchi

    19/02/2026
    Report

    AI: solo il 15% delle aziende ne trasforma la visione in valore

    10/02/2026

    AI: il mercato cresce del 50%, 1,8 mld. Un italiano su due la usa al lavoro

    05/02/2026

    Sistemi multi-agente: l’adozione crescerà del 67% entro il 2027

    05/02/2026

    Agentic AI: le aziende sono al punto di svolta

    30/01/2026
    Rete BitMAT
    • Bitmat
    • BitMATv
    • Top Trade
    • LineaEdp
    • ItisMagazine
    • Speciale Sicurezza
    • Industry 4.0
    • Sanità Digitale
    • Redazione
    • Contattaci
    NAVIGAZIONE
    • Cio
    • Cloud
    • Mercato
    • News
    • Tecnologia
    • Case History
    • Report
    • Sicurezza
    • IOT
    Chi Siamo
    Chi Siamo

    LineaEDP è una testata giornalistica appartenente al gruppo BitMAT Edizioni, una casa editrice che ha sede a Milano con una copertura a 360° per quanto riguarda la comunicazione online ed offline rivolta agli specialisti dell'lnformation & Communication Technology.

    Facebook X (Twitter) Instagram Vimeo LinkedIn RSS
    • Contattaci
    • Cookies Policy
    • Privacy Policy
    • Redazione
    © 2012 - 2026 BitMAT Edizioni - P.Iva 09091900960 - tutti i diritti riservati - Iscrizione al tribunale di Milano n° 293 del 28-11-2018 - Testata giornalistica iscritta al ROC

    Type above and press Enter to search. Press Esc to cancel.