• BitMAT
  • BitMATv
  • Top Trade
  • Linea EDP
  • Itis Magazine
  • Industry 5.0
  • Sanità Digitale
  • ReStart in Green
  • Speciale Data Center
  • Contattaci
Close Menu
LineaEDPLineaEDP
    Facebook X (Twitter) Vimeo Instagram LinkedIn RSS
    Trending
    • Shadow Campaigns, Unit 42 scopre un’attività di spionaggio globale
    • Banking: Oracle lancia una piattaforma agentica per l’era dell’AI
    • NIS2, nuove responsabilità per il management: Cynet abilita una sicurezza misurabile con piattaforma AI e MDR 24×7
    • Naquadria integra protezione DNS avanzata grazie alla partnership con FlashStart Group
    • Al Trend Micro #SecurityBarcamp va in scena la sicurezza del futuro
    • AI: il mercato cresce del 50%, 1,8 mld. Un italiano su due la usa al lavoro
    • Trasporti sotto attacco e la guerra digitale ferma servizi essenziali
    • Sistemi multi-agente: l’adozione crescerà del 67% entro il 2027
    Facebook X (Twitter) Vimeo Instagram LinkedIn RSS
    LineaEDPLineaEDP
    • Cio
    • Cloud
    • Mercato
    • News
    • Tecnologia
    • Case History
    • Report
    • Sicurezza
    • IOT
    LineaEDPLineaEDP
    Sei qui:Home»Featured»AI generativa in ambito industriale? Un’evoluzione inevitabile

    AI generativa in ambito industriale? Un’evoluzione inevitabile

    By Redazione LineaEDP15/10/20244 Mins Read
    Facebook Twitter LinkedIn Reddit Telegram WhatsApp Email

    I benefici dell’AI generativa nel settore industriale non si limitano ai soli processi produttivi. Scopri di più nell’articolo di Stefan Bergstein di Red Hat

    ai-generativa

    Nella produzione, anche piccoli errori possono portare al blocco della linea, in uno scenario da incubo che l’AI generativa promette di rendere sempre meno frequente. Nell’articolo che condividiamo di seguito, Stefan Bergstein, Chief Architect Manufacturing di Red Hat, illustra le nuove opportunità e i requisiti per implementare con successo questa tecnologia rivoluzionaria.

    Buona lettura!

    Macchine che prendono decisioni: come l’AI generativa aumenta l’efficienza produttiva

    L’AI non è una novità nel settore manifatturiero. Ottimizzazione dei processi e controllo qualità si avvalgono già dell’AI predittiva, così come la manutenzione predittiva basata su AI è diventata la norma in molte aziende, consentendo di effettuare interventi di manutenzione in maniera proattiva grazie all’analisi dei dati delle macchine. Tuttavia, finora l’applicazione dell’AI è spesso stata limitata alle singole macchine, senza considerare lo stato complessivo della linea di produzione o la comunicazione tra sistemi diversi, con un approccio frammentato che non permette di sfruttarne appieno il potenziale. Il panorama è destinato a cambiare grazie all’avvento dell’AI generativa, che promette di rendere la produzione industriale sempre più efficiente.

    Il potenziale dell’AI generativa si sta manifestando proprio nell’interazione uomo-macchina. L’obiettivo non è sostituire l’operatore, ma affiancarlo con suggerimenti generati dall’AI per affrontare le sfide tecniche e aumentare la produttività complessiva. Tuttavia, per l’implementazione dell’AI in ambito produttivo è fondamentale non affidarsi esclusivamente ai LLM (Large Language Models): nonostante vengano addestrati su enormi quantità di dati, i LLM possono infatti basarsi su informazioni obsolete. La soluzione risiede nella tecnica RAG (Retrieval-Augmented Generation), che arricchisce i LLM con dati provenienti da fonti aggiuntive, come informazioni in tempo reale, dati proprietari e parametri specifici delle macchine aziendali.

    Applicare l’AI generativa all’intera linea di produzione rappresenta un primo passo fondamentale verso una maggiore efficienza del settore manifatturiero. Altrettanto cruciale è l’utilizzo degli agenti AI. Pur non essendo un concetto nuovo di per sé, i progressi in ambito AI ne consentono finalmente l’implementazione pratica per la creazione di sistemi autonomi. Un agente AI può analizzare le problematiche attingendo a dati provenienti da diverse fonti – LLM, database vettoriali, knowledgebase o Internet – per trarre conclusioni e prendere decisioni. Queste informazioni possono essere fornite all’operatore o utilizzate per apportare modifiche in autonomia, aprendo la strada a molteplici casi d’uso automatizzati, come il rilevamento e la risoluzione degli errori.

    Dal cloud pubblico all’edge

    Nell’implementare l’AI, la strada del cloud pubblico è spesso la scelta iniziale per i data scientist perché consente di effettuare addestramento, controllo qualità e riaddestramento dei modelli in un unico ambiente. Tuttavia, le aziende manifatturiere si trovano poi di fronte a una domanda cruciale: come trasferire efficacemente i modelli addestrati in fabbrica, alle linee di produzione? La risposta risiede nell’edge computing. Per ottimizzare i processi produttivi è infatti necessario analizzare grandi quantità di dati in tempo reale, direttamente sulla linea di produzione, integrando l’IT con impianti e sistemi di controllo.

    Piattaforme ibride cloud aperte alla base

    Nonostante i vantaggi innegabili dell’AI generativa, molti progetti in questo ambito sono ancora in fase pilota. Uno studio di McKinsey evidenzia come solo il 3% delle aziende abbia implementato applicazioni di AI generativa in produzione. Le ragioni di questa esitazione sono molteplici: dalla mancanza di competenze specifiche alla carenza di risorse, fino all’assenza di un’infrastruttura adeguata che faciliti e acceleri l’adozione dell’AI dallo sviluppo all’operatività.

    Una piattaforma ibrida cloud aperta basata su container rappresenta la soluzione ideale per colmare questo gap infrastrutturale, in quanto offre una base solida e coerente per lo sviluppo, l’addestramento e l’integrazione dei modelli di AI, con la flessibilità di operare in ambienti privati, pubblici o edge. Non sorprende che sempre più aziende scelgano l’hybrid cloud per creare e gestire i propri ambienti AI. La migrazione verso piattaforme container è inarrestabile: anche i tradizionali MES (Manufacturing Execution Systems) si stanno spostando verso questa tecnologia, attratti dai numerosi vantaggi in termini di efficienza, rapidità di aggiornamento software e disponibilità.

    In sostanza, l’adozione dell’AI generativa in ambito industriale è un’evoluzione inevitabile, almeno nel medio termine, anche solo per restare al passo con la concorrenza. Ma le applicazioni dell’AI in azienda non si limitano ai processi produttivi: anche la resilienza della supply chain può trarre beneficio da questa tecnologia, ad esempio ottimizzando la selezione dei fornitori e implementando agenti AI per una maggiore flessibilità. È proprio l’ampio spettro di applicazioni possibili che rende l’AI generativa il motore principale della futura trasformazione industriale.

    di Stefan Bergstein, Chief Architect Manufacturing di Red Hat

    intelligenza artificiale generativa (GenAI) Red Hat Settore industriale Stefan Bergstein
    Share. Facebook Twitter LinkedIn Reddit Telegram WhatsApp Email
    Redazione LineaEDP
    • Facebook
    • X (Twitter)

    LineaEDP è parte di BitMAT Edizioni, una casa editrice che ha sede a Milano con copertura a 360° per quanto riguarda la comunicazione rivolta agli specialisti dell'lnformation & Communication Technology.

    Correlati

    NIS2, nuove responsabilità per il management: Cynet abilita una sicurezza misurabile con piattaforma AI e MDR 24×7

    06/02/2026

    Naquadria integra protezione DNS avanzata grazie alla partnership con FlashStart Group

    06/02/2026

    Al Trend Micro #SecurityBarcamp va in scena la sicurezza del futuro

    05/02/2026
    Newsletter

    Iscriviti alla Newsletter per ricevere gli aggiornamenti dai portali di BitMAT Edizioni.

    Security Words

    INFRASTRUTTURA APPLICATIVA: PROTEGGIAMOLA

    29/01/2024

    PASSWORD E STRATEGIA

    29/01/2024
    BitMATv – I video di BitMAT
    2VS1 incontra GCI: il Presales tra strategia, tecnologia e metodo
    Snom amplia l’ecosistema delle comunicazioni professionali
    Cybersecurity tra presente e futuro: minacce, trend e strategie per il 2026
    RS Italia, sostenibilità come leva strategica per la filiera
    Dal Forum Fiscale di Wolters Kluwer Italia le voci e le idee che stanno cambiando la professione
    Defence Tech

    Shadow Campaigns, Unit 42 scopre un’attività di spionaggio globale

    06/02/2026

    Al Trend Micro #SecurityBarcamp va in scena la sicurezza del futuro

    05/02/2026

    Trasporti sotto attacco e la guerra digitale ferma servizi essenziali

    05/02/2026

    ClearSkies: protezione aziendale su misura

    04/02/2026
    Report

    AI: il mercato cresce del 50%, 1,8 mld. Un italiano su due la usa al lavoro

    05/02/2026

    Sistemi multi-agente: l’adozione crescerà del 67% entro il 2027

    05/02/2026

    Agentic AI: le aziende sono al punto di svolta

    30/01/2026

    PA e IA: le 8 tendenze che trasformeranno il settore nel 2026

    29/01/2026
    Rete BitMAT
    • Bitmat
    • BitMATv
    • Top Trade
    • LineaEdp
    • ItisMagazine
    • Speciale Sicurezza
    • Industry 4.0
    • Sanità Digitale
    • Redazione
    • Contattaci
    NAVIGAZIONE
    • Cio
    • Cloud
    • Mercato
    • News
    • Tecnologia
    • Case History
    • Report
    • Sicurezza
    • IOT
    Chi Siamo
    Chi Siamo

    LineaEDP è una testata giornalistica appartenente al gruppo BitMAT Edizioni, una casa editrice che ha sede a Milano con una copertura a 360° per quanto riguarda la comunicazione online ed offline rivolta agli specialisti dell'lnformation & Communication Technology.

    Facebook X (Twitter) Instagram Vimeo LinkedIn RSS
    • Contattaci
    • Cookies Policy
    • Privacy Policy
    • Redazione
    © 2012 - 2026 BitMAT Edizioni - P.Iva 09091900960 - tutti i diritti riservati - Iscrizione al tribunale di Milano n° 293 del 28-11-2018 - Testata giornalistica iscritta al ROC

    Type above and press Enter to search. Press Esc to cancel.