• BitMAT
  • BitMATv
  • Top Trade
  • Linea EDP
  • Itis Magazine
  • Industry 5.0
  • Sanità Digitale
  • ReStart in Green
  • Contattaci
Close Menu
LineaEDPLineaEDP
    Facebook X (Twitter) Vimeo Instagram LinkedIn RSS
    Trending
    • Okta: progetti ambiziosi per emergere nel mercato italiano
    • L’AI Agentica arriva in Dynatrace
    • Infostealer: Kaspersky e INTERPOL collaborano alla Secure Operation
    • IT4 di Aruba: più connettività con il nuovo PoP di EXA Infrastructure
    • Cybersecurity: rischi e opportunità della business transformation
    • Data Cloud: pro e contro da valutare
    • Da Snowflake tante novità che facilitano workflow di AI e ML
    • Attacchi informatici: cosa è cambiato con l’AI?
    Facebook X (Twitter) Vimeo Instagram LinkedIn RSS
    LineaEDPLineaEDP
    • Cio
    • Cloud
    • Mercato
    • News
    • Tecnologia
    • Case History
    • Report
    • Sicurezza
    • IOT
    LineaEDPLineaEDP
    Sei qui:Home»Featured»AI generativa: quale impatto sui data analytics?

    AI generativa: quale impatto sui data analytics?

    By Redazione LineaEDP28/08/20243 Mins Read
    Facebook Twitter LinkedIn Reddit Telegram WhatsApp Email

    Giovanni Mazzucato, Project Leader di Axiante, spiega come quest’evoluzione dell’AI stia amplificando le capacità analitiche e previsionali in modi che erano impensabili fino a pochi anni fa

    EY Italy AI Barometer-AI generativa-IA-ai-intelligenza artificiale-could adjacent storage
    Foto di Tung Nguyen da Pixabay

    L’intelligenza artificiale generativa sta rapidamente trasformando molti settori e tecnologie, inclusa quella dei data analytics, portando una rivoluzione che sta riscrivendo le regole del gioco per molte aziende. Mentre l’AI tradizionale si è concentrata principalmente sull’analisi dei dati esistenti per fornire insights e predizioni, l’AI generativa è in grado di creare contenuti nuovi, di simulare scenari e di proporre soluzioni innovative, aprendo nuove frontiere in questo campo.

    Questa tecnologia emergente ha il potenziale di amplificare le capacità analitiche e previsionali in modi che erano impensabili fino a pochi anni fa. Ad esempio, le aziende possono ora utilizzare modelli di AI generativa per creare simulazioni complesse che aiutano a prevedere i comportamenti del mercato con una precisione senza precedenti. Simulazioni che possono prevedere scenari multipli, considerando variabili che un tempo erano difficili, se non impossibile, considerare, consentendo ai decision maker di esplorare strategie alternative e di prepararsi meglio per il futuro.

    Inoltre, l’AI generativa sta rivoluzionando il modo in cui le aziende gestiscono i dati non strutturati. Invece di limitarsi a estrarre informazioni da testi, immagini o video, i nuovi algoritmi di AI possono creare sintesi, riassunti e perfino nuovi contenuti a partire dai dati grezzi. L’AI generativa sta anche trasformando il customer service e l’interazione con i clienti. Attraverso l’uso di chatbot avanzati e assistenti virtuali, le aziende possono offrire un supporto cliente 24/7 che non solo risponde alle domande comuni, ma che può anche comprendere il contesto delle richieste, adattando le risposte e offrendo soluzioni personalizzate. Questi assistenti intelligenti sono capaci di generare conversazioni naturali e pertinenti, migliorando significativamente l’esperienza del cliente.

    Un altro aspetto cruciale è la capacità dell’AI generativa di migliorare la creatività aziendale. Nei settori del marketing e della pubblicità, per esempio, l’AI può creare contenuti visivi e testuali che catturano meglio l’attenzione del target di riferimento. Questo non solo accelera il processo creativo, ma consente anche di testare rapidamente diverse varianti di una campagna per identificare quelle più efficaci.

    Le varie piattaforme offrono potenti strumenti di data analytics e AI, le differenze chiave risiedono nelle loro aree di specializzazione e nell’integrazione con gli ecosistemi esistenti degli stessi vendor. AWS si distingue per la scalabilità e la profondità dei servizi, Azure per l’integrazione con l’ecosistema Microsoft, GCP per l’innovazione AI, IBM per le applicazioni specifiche di settore, Oracle per l’automazione e la gestione avanzata dei database, e Salesforce per l’integrazione AI nel CRM.

    La scelta del vendor giusto dipende ovviamente dalle specifiche esigenze aziendali e dagli obiettivi strategici che si intendono perseguire. Ciò che deve essere chiaro è che l’adozione di soluzioni cloud richiedono, forzatamente, l’impiego di risorse con profili specifici, non sempre facili da reperire sul mercato e difficilmente presenti in azienda. Questo ne limita la completa fruizione dei servizi a disposizione o, peggio, l’adozione.

    Ulteriori sfide risiedono nella stretta dipendenza della qualità dei data analytics da quella dei dati che lo alimentano e nella necessità di garantire la conformità alle normative sulla protezione dei dati, a cominciare dal GDPR.

    Detto ciò è indubbio che l’AI generativa sta ridefinendo il settore dei data analytics, offrendo strumenti potenti per la simulazione, la creazione di contenuti e l’interazione personalizzata, rivoluzionando in particolare la gestione dei dati non strutturati.

    di Giovanni Mazzucato, Project Leader di Axiante

    AI generativa Axiante Data Analytics GenAI Giovanni Mazzucato
    Share. Facebook Twitter LinkedIn Reddit Telegram WhatsApp Email
    Redazione LineaEDP
    • Facebook
    • X (Twitter)

    LineaEDP è parte di BitMAT Edizioni, una casa editrice che ha sede a Milano con copertura a 360° per quanto riguarda la comunicazione rivolta agli specialisti dell'lnformation & Communication Technology.

    Correlati

    IT4 di Aruba: più connettività con il nuovo PoP di EXA Infrastructure

    12/06/2025

    Cybersecurity: rischi e opportunità della business transformation

    12/06/2025

    Data Cloud: pro e contro da valutare

    12/06/2025
    Newsletter

    Iscriviti alla Newsletter per ricevere gli aggiornamenti dai portali di BitMAT Edizioni.

    Security Words

    INFRASTRUTTURA APPLICATIVA: PROTEGGIAMOLA

    29/01/2024

    PASSWORD E STRATEGIA

    29/01/2024
    BitMATv – I video di BitMAT
    Legrand Data Center al Data Center Nation per parlare del data center del futuro!
    Snom: focus su tecnologia e partner
    Cumulabilità Transizione 5.0 e ZES: i vantaggi del Litio
    Transizione 5.0: vuoi il 45% sui software?
    Stormshield: Zero Trust pilastro della security aziendale
    Defence Tech

    Okta: progetti ambiziosi per emergere nel mercato italiano

    12/06/2025

    Infostealer: Kaspersky e INTERPOL collaborano alla Secure Operation

    12/06/2025

    Cybersecurity: rischi e opportunità della business transformation

    12/06/2025

    Attacchi informatici: cosa è cambiato con l’AI?

    11/06/2025
    Report

    Cybersecurity: le previsioni di Deloitte

    10/06/2025

    Red Hat rivela il futuro della virtualizzazione: innovazione e agilità per le aziende

    06/06/2025

    Sviluppatori entusiasti e ottimisti sull’AI agentica

    04/06/2025

    Intelligenza Artificiale: non tutte le aziende sono pronte

    30/05/2025
    Rete BitMAT
    • Bitmat
    • BitMATv
    • Top Trade
    • LineaEdp
    • ItisMagazine
    • Speciale Sicurezza
    • Industry 4.0
    • Sanità Digitale
    • Redazione
    • Contattaci
    NAVIGAZIONE
    • Cio
    • Cloud
    • Mercato
    • News
    • Tecnologia
    • Case History
    • Report
    • Sicurezza
    • IOT
    Chi Siamo
    Chi Siamo

    BitMAT Edizioni è una casa editrice che ha sede a Milano con una copertura a 360° per quanto riguarda la comunicazione online ed offline rivolta agli specialisti dell'lnformation & Communication Technology.

    Facebook X (Twitter) Instagram Vimeo LinkedIn RSS
    • Contattaci
    • Cookies Policy
    • Privacy Policy
    • Redazione
    © 2012 - 2025 BitMAT Edizioni - P.Iva 09091900960 - tutti i diritti riservati - Iscrizione al tribunale di Milano n° 293 del 28-11-2018 - Testata giornalistica iscritta al ROC

    Type above and press Enter to search. Press Esc to cancel.