• BitMAT
  • BitMATv
  • Top Trade
  • Linea EDP
  • Itis Magazine
  • Industry 5.0
  • Sanità Digitale
  • ReStart in Green
  • Contattaci
Close Menu
LineaEDPLineaEDP
    Facebook X (Twitter) Vimeo Instagram LinkedIn RSS
    Trending
    • Cynet: la cloud security per le PA è certificata da ACN
    • Operazioni di logistica efficienti e resilienti: i consigli di SAP
    • Soluzioni per Data Center: le novità firmate Schneider Electric
    • Progetti di AI di successo: ecco cosa NON fare!
    • Cybersecurity e normative UE: la compliance è semplice con TimeFlow
    • IA: da Kaspersky una guida per un utilizzo etico e sicuro
    • AI: costruirla partendo dai dati in tempo reale
    • IA e personalizzazione delle esperienze digitali
    Facebook X (Twitter) Vimeo Instagram LinkedIn RSS
    LineaEDPLineaEDP
    • Cio
    • Cloud
    • Mercato
    • News
    • Tecnologia
    • Case History
    • Report
    • Sicurezza
    • IOT
    LineaEDPLineaEDP
    Sei qui:Home»Rubriche»Sicurezza»Autoanalyst apprende dagli analisti SOC e scova i falsi positivi

    Autoanalyst apprende dagli analisti SOC e scova i falsi positivi

    By Redazione LineaEDP01/08/2024Updated:01/08/20245 Mins Read
    Facebook Twitter LinkedIn Reddit Telegram WhatsApp Email

    Utilizzato nell’MDR, Autoanalyst riduce il carico dei team di cybersecurity rilevando i falsi positivi nei security alert grazie all’Intelligenza Artificiale

    Autoanalyst

    Con l’aumento degli attacchi informatici, le aziende tengono alta la guardia e segnalano ai propri team di sicurezza informatica ogni minaccia sospetta. Però, alcuni di questi avvisi, sono dei falsi positivi. Per ridurre al minimo il rischio di non riuscire a rilevare i cyberattacchi, è necessario gestire un numero elevato di falsi positivi nella logica di rilevamento. Secondo il report di analisi MDR per il 2023, il team SOC di Kaspersky ha esaminato 431.512 security alert, ma solo 32.294 sono stati identificati come risultato di 14.160 incidenti segnalati ai clienti. In questi casi, c’è molto spazio per l’automazione, tra cui l’uso di machine learning (ML), deep learning e intelligenza artificiale (IA). In particolare, Autoanalyst basato sull’AI, utilizzato nell’MDR, ha esaminato in media quasi il 30% dei falsi positivi nel 2023, riducendo il carico del team SOC di circa il 25%.

    Come AI/ML aiuta a rilevare gli incidenti  

    L’applicazione più comune del machine learning nella cybersecurity è il rilevamento degli attacchi, dove possono essere impiegati sia l’apprendimento supervisionato che in quello non supervisionato. Nel machine learning supervisionato, il modello viene addestrato sui dati relativi all’attività degli aggressori con l’obiettivo di identificare comportamenti dannosi simili. Al contrario, l’apprendimento non supervisionato prevede la profilazione del comportamento legittimo di sistemi e servizi per rilevare anomalie, divergenze e casi fuori dalla norma. Nonostante la loro efficacia, entrambi gli approcci sono soggetti a errori, il che significa che i falsi positivi sono ancora una sfida per i sistemi di rilevamento automatico.

    “Conoscendo bene l’aspetto degli attacchi moderni e sapendo che il loro rilevamento spesso si traduce in un grande volume di avvisi, i SOC stanno studiando come ridurre il carico di lavoro degli analisti con l’aiuto del ML, come migliorare l’efficienza del triage, filtrando i falsi positivi nel flusso di avvisi generato e spostando le operazioni di automazione dal semplice rilevamento degli attacchi al filtraggio delle attività legittime”, ha dichiarato Sergey Soldatov, Head of Security Operation Center di Kaspersky. “La soluzione al problema del filtraggio dei falsi positivi è Autoanalyst basato sull’IA. Questo modello di machine learning supervisionato impara dagli avvisi elaborati dal team SOC e cerca quindi di replicarne il comportamento in modo indipendente”.

    Riducendo di almeno un quarto il numero di avvisi che richiedono un’indagine da parte degli analisti SOC, Autoanalyst consente di preservare le risorse del team. Inoltre, Autoanalyst gestisce gli avvisi più comuni e di routine, consentendo agli analisti SOC di concentrarsi sui casi più interessanti che richiedono un’indagine più approfondita da parte dell’uomo.

    I vantaggi di AI/ML per la tecnologia MDR

    Il mondo attuale è segnato da una lotta senza fine tra forze opposte e il campo della sicurezza informatica non fa eccezione. Da un lato, ci si sforza a ridurre al minimo il rischio di incidenti non rilevati, creando un numero crescente di regole di detection, comprese quelle basate su AI/ML. Questo approccio si traduce in un elevato volume di avvisi che richiedono l’attenzione del team SOC, portando a un maggior numero di falsi positivi e riducendo la capacità di reazione del sistema di rilevamento.

    D’altro canto, l’obiettivo principale è ridurre i falsi positivi e alleggerire gli analisti dal carico di lavoro. Il modo più semplice per farlo è diminuire il numero totale di avvisi, ma questo aumenta la probabilità di perdere un attacco. Di conseguenza, ci si trova di fronte alla sfida di bilanciare la qualità del rilevamento con la trasformazione della logica di rilevamento: cercare di rilevare tutto ed essere sommersi dai falsi positivi, oppure non avere falsi positivi, con un tasso di conversione vicino al 100%, ma si corre il rischio di perdere alcuni attacchi.

    “In generale, è possibile trovare un equilibrio tra questi estremi, ottenendo un rilevamento di alta qualità degli attacchi nascosti e riducendo contemporaneamente il numero di falsi positivi. Uno strumento per ottenere questo “interruttore” è Autoanalyst. Quando aumenta il livello di filtraggio, con una conseguente riduzione del carico di lavoro per il team SOC, cresce la probabilità di errore di classificazione”, ha concluso Sergey Soldatov.

    Autoanalyst impara dagli analisti SOC a riconoscere i falsi positivi

    Questo significa che gli avvisi realmente positivi potrebbero essere erroneamente classificati come falsi positivi e viceversa. Al contrario, la riduzione degli errori di classificazione porta in genere a un aumento del tasso di falsi positivi. Le statistiche dimostrano che anche gli analisti SOC possono commettere errori, quindi un piccolo margine di errore è accettabile per Autoanalyst. Nel caso di Kaspersky MDR, la probabilità di errore non supera il 2%. Questo margine di errore del 2% definisce il volume di avvisi falsi positivi che Autoanalyst può filtrare mantenendo una qualità adeguata.

    La qualità del lavoro di Autoanalyst viene monitorata dinamicamente e la sua percentuale di filtraggio degli avvisi viene regolata di conseguenza. Può sembrare curioso, ma Autoanalyst ha imparato dagli analisti SOC non solo a riconoscere i falsi positivi, ma anche a “stancarsi” e a essere “sovraccaricato” con un conseguente calo della qualità. Questo problema viene affrontato attraverso una costante riqualificazione del modello se il suo margine di errore di classificazione dei falsi positivi supera il 2%.

    cybersecurity falsi positivi intelligenza artificiale (AI) Kaspersky Machine Learning Security Alert SOC
    Share. Facebook Twitter LinkedIn Reddit Telegram WhatsApp Email
    Redazione LineaEDP
    • Facebook
    • X (Twitter)

    LineaEDP è parte di BitMAT Edizioni, una casa editrice che ha sede a Milano con copertura a 360° per quanto riguarda la comunicazione rivolta agli specialisti dell'lnformation & Communication Technology.

    Correlati

    Cynet: la cloud security per le PA è certificata da ACN

    04/07/2025

    Operazioni di logistica efficienti e resilienti: i consigli di SAP

    04/07/2025

    Progetti di AI di successo: ecco cosa NON fare!

    04/07/2025
    Newsletter

    Iscriviti alla Newsletter per ricevere gli aggiornamenti dai portali di BitMAT Edizioni.

    Security Words

    INFRASTRUTTURA APPLICATIVA: PROTEGGIAMOLA

    29/01/2024

    PASSWORD E STRATEGIA

    29/01/2024
    BitMATv – I video di BitMAT
    ExpertBook P5, il notebook con l’AI integrata
    La tua fabbrica è resiliente?
    Legrand Data Center al Data Center Nation per parlare del data center del futuro!
    Snom: focus su tecnologia e partner
    Cumulabilità Transizione 5.0 e ZES: i vantaggi del Litio
    Defence Tech

    Industria sotto attacco: l’Italia tra i Paesi più colpiti. Serve agire

    02/07/2025

    La sicurezza del cloud rimane tra le priorità principali delle aziende

    01/07/2025

    Spionaggio e cybercrime si sovrappongono. La scoperta di Proofpoint

    01/07/2025

    Imprese italiane e l’evoluzione delle minacce informatiche

    30/06/2025
    Report

    Il digitale in Italia raccoglie i frutti seminati dall’AI

    03/07/2025

    Continuità Digitale: leva strategica per l’evoluzione dell’A&D

    03/07/2025

    GenAI: aumenta l’adozione, ma anche i rischi

    02/07/2025

    Adozione dell’AI: crescita vertiginosa tra gli impiegati

    01/07/2025
    Rete BitMAT
    • Bitmat
    • BitMATv
    • Top Trade
    • LineaEdp
    • ItisMagazine
    • Speciale Sicurezza
    • Industry 4.0
    • Sanità Digitale
    • Redazione
    • Contattaci
    NAVIGAZIONE
    • Cio
    • Cloud
    • Mercato
    • News
    • Tecnologia
    • Case History
    • Report
    • Sicurezza
    • IOT
    Chi Siamo
    Chi Siamo

    BitMAT Edizioni è una casa editrice che ha sede a Milano con una copertura a 360° per quanto riguarda la comunicazione online ed offline rivolta agli specialisti dell'lnformation & Communication Technology.

    Facebook X (Twitter) Instagram Vimeo LinkedIn RSS
    • Contattaci
    • Cookies Policy
    • Privacy Policy
    • Redazione
    © 2012 - 2025 BitMAT Edizioni - P.Iva 09091900960 - tutti i diritti riservati - Iscrizione al tribunale di Milano n° 293 del 28-11-2018 - Testata giornalistica iscritta al ROC

    Type above and press Enter to search. Press Esc to cancel.