• BitMAT
  • BitMATv
  • Top Trade
  • Linea EDP
  • Itis Magazine
  • Industry 5.0
  • Sanità Digitale
  • ReStart in Green
  • Contattaci
Close Menu
LineaEDPLineaEDP
    Facebook X (Twitter) Vimeo Instagram LinkedIn RSS
    Trending
    • Customer Data Platform: crescita record nel 2024 (+13%)
    • Il settore automotive è e sarà sempre più AI-oriented
    • Protect AI farà presto parte di Palo Alto Network
    • Attacchi informatici: sicurezza nazionale compromessa dagli APT
    • Il Print Management secondo Brother
    • SAS Viya si aggiorna per una produttività senza precedenti
    • Infrastrutture e workload: come riconfigurarli a causa dell’impatto dell’AI?
    • Nutanix e Pure Storage creano una nuova soluzione integrata
    Facebook X (Twitter) Vimeo Instagram LinkedIn RSS
    LineaEDPLineaEDP
    • Cio
    • Cloud
    • Mercato
    • News
    • Tecnologia
    • Case History
    • Report
    • Sicurezza
    • IOT
    LineaEDPLineaEDP
    Sei qui:Home»Featured»Intelligenza artificiale in cerca di un futuro sostenibile

    Intelligenza artificiale in cerca di un futuro sostenibile

    By Redazione LineaEDP09/06/20235 Mins Read
    Facebook Twitter LinkedIn Reddit Telegram WhatsApp Email

    Roberto Carrozzo (in foto), Head of Intelligence & Data Minsait, riflette se è possibile un futuro sostenibile per l’intelligenza artificiale

    intelligenza artificiale

    Nel contributo che vi proponiamo qui di seguito, Roberto Carrozzo, Head of Intelligence & Data Minsait, si interroga su come si possano bilanciare i benefici dell’intelligenza artificiale e delle GAN con i rischi che esse comportano e garantire che queste potenti tecnologie vengano utilizzate per il bene della società.
    Buona lettura.

    È di qualche mese fa l’incredibile notizia pubblicata dal New York Times in cui si raccontava di un ospedale ungherese in cui un software di intelligenza artificiale ha individuato, in una paziente, un principio di cancro al seno che era sfuggito all’occhio attento dei radiologi. Circa nello stesso periodo andavano virali sui social le foto del Papa con outfit improbabili ma iper-realistici. Che cos’hanno in comune queste due notizie, apparentemente così distanti tra di loro? La tecnologia alla base: le reti neurali artificiali.

    Questi modelli computazionali possono aiutare a comprendere in anticipo le evoluzioni di un tumore e prevedere una cura per il trattamento. Come abbiamo visto, però, possono anche semplificare la generazione di notizie false e immagini truccate difficilmente distinguibili dalla realtà. Sebbene questi due casi d’uso siano totalmente agli antipodi, sia per quanto riguarda l’ambito di applicazione che per quanto concerne la finalità, essi riassumono perfettamente le potenzialità e i rischi di questi modelli di intelligenza artificiale.

    Il pericolo corre sulle GAN?

    Uno dei modelli più potenti e innovativi tra le reti neurali artificiali è quello delle Generative Adversarial Networks (GAN). Il funzionamento delle GAN è basato sulla competizione tra due reti neurali: generatore e discriminatore. Partendo da un dataset con dati reali, il primo cerca di creare dati sintetici che imitino quelli reali, e il secondo cerca di distinguerli da quelli effettivamente prodotti da esseri umani. Attraverso questa continua sfida, il generatore riceve un feedback dal discriminatore su come migliorare i propri campioni, e attraverso questa retroazione, il generatore migliora sempre di più la propria capacità di generare contenuti che sembrano reali. Questo ciclo di feedback continuo porta alla produzione di contenuti sempre più convincenti.

    Le GAN sono molto efficaci per catturare effetti complessi e hanno mostrato un enorme potenziale in diversi ambiti di applicazione come ad esempio l’image inpainting ovvero il ripristino di parti mancanti da immagini, la super resolution che consente di rendere ad alta definizione immagini a bassa definizione, il denoising per rimuovere il rumore dai dati (ad esempio la rimozione del rumore statistico dalle immagini a raggi x in ambito sanitario). In ambito medico questi modelli di intelligenza artificiale vengono già utilizzati per lo studio delle immagini a raggi x al fine di comprendere come evolve il cervello dei pazienti in presenza e assenza di patologie dirette e per comprendere in anticipo l’evoluzione di alcuni tipi di tumore (come, ad esempio, il glioblastoma) e prevedere una cura per il trattamento.

    Dietro l’intelligenza artificiale un bel dilemma etico

    Nonostante le incredibili opportunità offerte dalle GAN per migliorare e innovare vari settori, esistono anche rischi e minacce non trascurabili legati alla sempre maggior democratizzazione di questi strumenti di intelligenza artificiale. Tra i principali pericoli vi è sicuramente la semplificazione nella generazione di notizie false o di immagini contraffate utilizzabili da attori malevoli per perseguire fini compromettenti o diffamatori. La diffusione massiccia di contenuti falsi può contribuire a manipolare l’opinione pubblica, impattando negativamente il sistema democratico e la società nel suo complesso.

    Quindi come possiamo bilanciare i benefici delle GAN con i rischi che esse comportano? Come possiamo garantire che queste potenti tecnologie vengano utilizzate per il bene della società, invece che per scopi malevoli?

    Da una parte è la stessa tecnologia che può venirci incontro. Sono in corso iniziative che prevedono l’uso dell’intelligenza artificiale per individuare le fake news. È paradossale come la stessa tecnologia possa aiutare a individuare gli usi impropri della tecnologia stessa.

    Dall’altra parte non si può non considerare il tema etico. Il professor Luciano Floridi ha stilato cinque principi fondamentali che determinano il carattere etico dei sistemi di intelligenza artificiale, e sono: beneficenza, non malevolenza, autonomia, giustizia ed esplicabilità. Ed è proprio la mancanza di questo ultimo principio che continua a compromettere l’eticità di tecnologie come le GAN, che nella maggioranza dei casi non condividono informazioni sul proprio algoritmo, sul dataset di riferimento o sui metodi di addestramento.

    Serve maggiore trasparenza

    Finché non ci sarà maggiore trasparenza non sarà possibile indagare sugli scopi e sui pericoli che si celano dietro questi sistemi. Inoltre, come dimostrano le ultime iniziative nazionali e sovranazionali, è necessario che le istituzioni si attivino per rispondere alle sfide portate dalle IA, senza pregiudicare le potenzialità di innovazione e di sviluppo. Un esempio è quello dell’European Data Protection Board che ha deciso di avviare una task force con l’obiettivo di favorire la cooperazione e lo scambio di informazioni tra i paesi membri in tema di regolamentazioni sull’Intelligenza Artificiale. È fondamentale, in tal senso, una stretta collaborazione tra esperti del settore, governi, istituzioni e altri stakeholder per definire standard e best practice che tutelino gli interessi dei cittadini e prevengano l’abuso di queste tecnologie.

    Un futuro sostenibile per l’Intelligenza Artificiale è possibile, ma tutti gli attori coinvolti devono lavorare insieme per creare un domani in cui algoritmi come le GAN possano prosperare, ma senza compromettere il benessere della società e la stabilità del nostro sistema democratico.

    Minsait modelli computazionali reti neurali artificiali Roberto Carrozzo software di intelligenza artificiale
    Share. Facebook Twitter LinkedIn Reddit Telegram WhatsApp Email
    Redazione LineaEDP
    • Facebook
    • X (Twitter)

    LineaEDP è parte di BitMAT Edizioni, una casa editrice che ha sede a Milano con copertura a 360° per quanto riguarda la comunicazione rivolta agli specialisti dell'lnformation & Communication Technology.

    Correlati

    Customer Data Platform: crescita record nel 2024 (+13%)

    09/05/2025

    Il settore automotive è e sarà sempre più AI-oriented

    09/05/2025

    Il Print Management secondo Brother

    09/05/2025
    Newsletter

    Iscriviti alla Newsletter per ricevere gli aggiornamenti dai portali di BitMAT Edizioni.

    Security Words

    INFRASTRUTTURA APPLICATIVA: PROTEGGIAMOLA

    29/01/2024

    PASSWORD E STRATEGIA

    29/01/2024
    BitMATv – I video di BitMAT
    Transizione 5.0: vuoi il 45% sui software?
    Stormshield: Zero Trust pilastro della security aziendale
    RENTRI: regole pratiche per uscirne vivi
    Vertiv: come evolve il mondo dei data center
    2VS1 incontra GCI: focus sulle competenze
    Defence Tech

    Attacchi informatici: sicurezza nazionale compromessa dagli APT

    09/05/2025

    TheWizards: il gruppo APT che colpisce Asia e Medio Oriente

    08/05/2025

    Resilienza Produttiva: come rafforzarla?

    07/05/2025

    IA e rischi cyber: gli attacchi si fanno più mirati e sofisticati

    07/05/2025
    Report

    L’AI irrompe nel manufacturing

    02/05/2025

    L’AI è il futuro, ma senza dati rimane solo una promessa

    02/05/2025

    IBM X-Force Threat Index 2025: vecchi e nuovi trend delle minacce cyber

    18/04/2025

    Intelligenza Artificiale e GenAI: adozione in crescita nel 2024

    10/04/2025
    Rete BitMAT
    • Bitmat
    • BitMATv
    • Top Trade
    • LineaEdp
    • ItisMagazine
    • Speciale Sicurezza
    • Industry 4.0
    • Sanità Digitale
    • Redazione
    • Contattaci
    NAVIGAZIONE
    • Cio
    • Cloud
    • Mercato
    • News
    • Tecnologia
    • Case History
    • Report
    • Sicurezza
    • IOT
    Chi Siamo
    Chi Siamo

    BitMAT Edizioni è una casa editrice che ha sede a Milano con una copertura a 360° per quanto riguarda la comunicazione online ed offline rivolta agli specialisti dell'lnformation & Communication Technology.

    Facebook X (Twitter) Instagram Vimeo LinkedIn RSS
    • Contattaci
    • Cookies Policy
    • Privacy Policy
    • Redazione
    © 2012 - 2025 BitMAT Edizioni - P.Iva 09091900960 - tutti i diritti riservati - Iscrizione al tribunale di Milano n° 293 del 28-11-2018 - Testata giornalistica iscritta al ROC

    Type above and press Enter to search. Press Esc to cancel.